The Partial Visibility Representation Extension Problem

  • Steven Chaplick
  • Grzegorz Guśpiel
  • Grzegorz Gutowski
  • Tomasz Krawczyk
  • Giuseppe Liotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

For a graph G, a function \(\psi \) is called a bar visibility representation of G when for each vertex \(v \in V(G)\), \(\psi (v)\) is a horizontal line segment (bar) and \(uv \in E(G)\) iff there is an unobstructed, vertical, \(\varepsilon \)-wide line of sight between \(\psi (u)\) and \(\psi (v)\). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph G, a bar visibility representation \(\psi \) of G, additionally, for each directed edge (uv) of G, puts the bar \(\psi (u)\) strictly below the bar \(\psi (v)\). We study a generalization of the recognition problem where a function \(\psi '\) defined on a subset \(V'\) of V(G) is given and the question is whether there is a bar visibility representation \(\psi \) of G with \(\psi |V' = \psi '\). We show that for undirected graphs this problem together with closely related problems are \(\mathsf {NP}\)-complete, but for certain cases involving directed graphs it is solvable in polynomial time.

References

  1. 1.
    Andreae, T.: Some results on visibility graphs. Discrete Appl. Math. 40(1), 5–17 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32:1–32:42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14031-0_25 CrossRefGoogle Scholar
  4. 4.
    Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-12340-0_12 Google Scholar
  5. 5.
    Chaplick, S., Guśpiel, G., Gutowski, G., Krawczyk, T., Liotta, G.: The partial visibility representation extension problem (2015). Pre-print arXiv:1512.00174
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)MATHGoogle Scholar
  7. 7.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoret. Comput. Sci. 61(2–3), 175–198 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Duchet, P., Hamidoune, Y.O., Vergnas, M.L., Meyniel, H.: Representing a planar graph by vertical lines joining different levels. Discrete Math. 46(3), 319–321 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graphs of points, segments, and polygons. ACM Comput. Surv. 46(2), 22:1–22:29 (2013)CrossRefMATHGoogle Scholar
  13. 13.
    Luccio, F., Mazzone, S., Wong, C.K.: A note on visibility graphs. Discrete Math. 64(2–3), 209–219 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Otten, R., van Wijk, J.G.: Graph representations in interactive layout design. In: Proceedings of IEEE International Symposium on Circuits and Systems, New York, NY, USA, May 1978, pp. 914–918 (1978)Google Scholar
  15. 15.
    Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete Comput. Geom. 1(4), 321–341 (1986)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Proceedings of 1st Annual Symposium on Computational Geometry SCG 1985, Baltimore, MD, USA, June 1985, pp. 147–152 (1985)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Steven Chaplick
    • 1
  • Grzegorz Guśpiel
    • 2
  • Grzegorz Gutowski
    • 2
  • Tomasz Krawczyk
    • 2
  • Giuseppe Liotta
    • 3
  1. 1.Lehrstuhl für Informatik IUniversität WürzburgWürzburgGermany
  2. 2.Theoretical Computer Science Department, Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  3. 3.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations