A Sparse Stress Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Force-directed layout methods constitute the most common approach to draw general graphs. Among them, stress minimization produces layouts of comparatively high quality but also imposes comparatively high computational demands. We propose a speed-up method based on the aggregation of terms in the objective function. It is akin to aggregate repulsion from far-away nodes during spring embedding but transfers the idea from the layout space into a preprocessing phase. An initial experimental study informs a method to select representatives, and subsequent more extensive experiments indicate that our method yields better approximations of minimum-stress layouts in less time than related methods.

References

  1. 1.
    Barnes, J., Hut, P.: A hierarchical O(\(n \log n\)) force-calculation algorithm. Nature 324(6096), 446–449 (1986). http://dx.doi.org/10.1038/324446a0 CrossRefGoogle Scholar
  2. 2.
    Borg, I., Groenen, P.J.: Modern Multidimensional Scaling: Theory and Applications. Springer, New York (2005)MATHGoogle Scholar
  3. 3.
    Brandes, U.: Drawing on physical analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 71–86. Springer, Heidelberg (2001). doi:10.1007/3-540-44969-8_4 CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70904-6_6 CrossRefGoogle Scholar
  5. 5.
    Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00219-9_21 CrossRefGoogle Scholar
  6. 6.
    Brandes, U., Schulz, F., Wagner, D., Willhalm, T.: Travel planning with self-made maps. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 132–144. Springer, Heidelberg (2001). doi:10.1007/3-540-44808-X_10 CrossRefGoogle Scholar
  7. 7.
    Cohen, J.D.: Drawing graphs to convey proximity: an incremental arrangement method. ACM Trans. Comput. Hum. Interact. 4(3), 197–229 (1997). http://doi.acm.org/10.1145/264645.264657 CrossRefGoogle Scholar
  8. 8.
    Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1: 1–1: 25 (2011). http://www.cise.ufl.edu/research/sparse/matrices MathSciNetGoogle Scholar
  9. 9.
    Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs via the singular value decomposition. Mach. Learn. 56(1–3), 9–33 (2004). http://dx.doi.org/10.1023/B:MACH.0000033113.59016.96 CrossRefMATHGoogle Scholar
  10. 10.
    Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995). doi:10.1007/3-540-58950-3_393 CrossRefGoogle Scholar
  11. 11.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991). http://dx.doi.org/10.1002/spe.4380211102 CrossRefGoogle Scholar
  12. 12.
    Gabriel, R.K., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Zool. 18(3), 259–278 (1969)CrossRefGoogle Scholar
  13. 13.
    Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001). doi:10.1007/3-540-44541-2_20 CrossRefGoogle Scholar
  14. 14.
    Gansner, E.R., Hu, Y., Krishnan, S.: COAST: a convex optimization approach to stress-based embedding. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 268–279. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03841-4_24 CrossRefGoogle Scholar
  15. 15.
    Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)CrossRefGoogle Scholar
  16. 16.
    Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31843-9_25 CrossRefGoogle Scholar
  17. 17.
    Greengard, L.: The Rapid evaluation of potential fields in particle systems. ACM distinguished dissertations, MIT Press, Cambridge (1988). http://opac.inria.fr/record=b1086802
  18. 18.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31843-9_29 CrossRefGoogle Scholar
  19. 19.
    Hall, K.M.: An \(r\)-dimensional quadratic placement algorithm. Manag. Sci. 17(3), 219–229 (1970). http://dx.doi.org/10.1287/mnsc.17.3.219 CrossRefMATHGoogle Scholar
  20. 20.
    Hu, Y., Shi, L.: Visualizing large graphs. Wiley Interdiscip. Rev. Comput. Stat. 7(2), 115–136 (2015). http://dx.doi.org/10.1002/wics.1343 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hu, Y.F.: Efficient and high quality force-directed graph drawing. Mathematica J. 10, 37–71 (2005).http://www.mathematica-journal.com/issue/v10i1/contents/graph_draw/graph_draw.pdf
  22. 22.
    Ingram, S., Munzner, T.: Glint: An MDS framework for costly distance functions. In: Kerren, A., Seipel, S. (eds.) Proceedings of SIGRAD 2012, Interactive Visual Analysis of Data. Linköping Electronic Conference Proceedings, vol. 81, pp. 29–38. Linköping University Electronic Press (2012). http://www.ep.liu.se/ecp_article/index.en.aspx?issue=081;article=005
  23. 23.
    Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.E.: Drawing large graphs by low-rank stress majorization. Comput. Graph. Forum 31(3), 975–984 (2012). http://dx.doi.org/10.1111/j.1467-8659.2012.03090.x CrossRefGoogle Scholar
  24. 24.
    Klimenta, M., Brandes, U.: Graph drawing by classical multidimensional scaling: new perspectives. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 704, pp. 55–66. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36763-2_6 Google Scholar
  25. 25.
    Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 383–408. CRC Press, Boca Raton (2013)Google Scholar
  26. 26.
    Koren, Y., Carmel, L., Harel, D.: ACE: A fast multiscale eigenvectors computation for drawing huge graphs. In: Wong, P.C., Andrews, K. (eds.) InfoVis 2002, pp. 137–144. IEEE Computer Society (2002). http://dx.doi.org/10.1109/INFVIS.2002.1173159
  27. 27.
    McGee, V.E.: The multidimensional analysis of “elastic” distances. Br. J. Math. Stat. Psychol. 19(2), 181–196 (1966). http://dx.doi.org/10.1111/j.2044-8317.1966.tb00367.x CrossRefGoogle Scholar
  28. 28.
    Meyerhenke, H., Nöllenburg, M., Schulz, C.: Drawing large graphs by multilevel maxent-stress optimization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 30–43. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27261-0_3 CrossRefGoogle Scholar
  29. 29.
    Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. CoRR abs/1608.08909 (2016). http://arxiv.org/abs/1608.08909
  30. 30.
    Quigley, A.J.: Large scale relational information visualization, clustering, and abstraction. Ph.D. thesis, University of Newcastle (2000)Google Scholar
  31. 31.
    Sibson, R.: Studies in the robustness of multidimensional scaling: procrustes statistics. J. Roy. Stat. Soc. Ser. B (Methodol.) 40(2), 234–238 (1978). http://www.jstor.org/stable/2984761 MathSciNetMATHGoogle Scholar
  32. 32.
    de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS 2002, pp. 705–712. MIT Press, Cambridge (2002). http://papers.nips.cc/paper/2141-global-versus-local-methods-in-nonlinear-dimensionality-reduction Google Scholar
  33. 33.
    Tunkelang, D.: JIGGLE: java interactive graph layout environment. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg (1998). doi:10.1007/3-540-37623-2_33 CrossRefGoogle Scholar
  34. 34.
    Tunkelang, D.: A numerical optimization approach to general graph drawing. Ph.D. thesis, Carnegie Mellon University (1999)Google Scholar
  35. 35.
    Walshaw, C.: A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms Appl. 7(3), 253–285 (2003). http://www.cs.brown.edu/publications/jgaa/accepted/2003/Walshaw2003.7.3.pdf MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Computer and Information ScienceUniversity of KonstanzKonstanzGermany

Personalised recommendations