Drawing Planar Graphs with Many Collinear Vertices

  • Giordano Da Lozzo
  • Vida Dujmović
  • Fabrizio Frati
  • Tamara Mchedlidze
  • Vincenzo Roselli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9801)

Abstract

Given a planar graph G, what is the maximum number of collinear vertices in a planar straight-line drawing of G? This problem resides at the core of several graph drawing problems, including universal point subsets, untangling, and column planarity. The following results are known: Every n-vertex planar graph has a planar straight-line drawing with \(\varOmega (\sqrt{n})\) collinear vertices; for every n, there is an n-vertex planar graph whose every planar straight-line drawinghas \(O(n^{0.986})\) collinear vertices; every n-vertex planar graph of treewidth at most two has a planar straight-line drawingwith \(\varTheta (n)\) collinear vertices. We extend the linear bound to planar graphs of treewidth at most three and to triconnected cubic planar graphs, partially answering two problems posed by Ravsky and Verbitsky. Similar results are not possible for all bounded treewidth or bounded degree planar graphs. For planar graphs of treewidth at most three, our results also imply asymptotically tight bounds for all of the other above mentioned graph drawing problems.

References

  1. 1.
    Angelini, P., Binucci, C., Evans, W., Hurtado, F., Liotta, G., Mchedlidze, T., Meijer, H., Okamoto, Y.: Universal point subsets for planar graphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 423–432. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35261-4_45 CrossRefGoogle Scholar
  2. 2.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303–312 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bose, P., Dujmović, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.: A polynomial bound for untangling geometric planar graphs. Discrete Comput. Geom. 42(4), 570–585 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cano, J., Tóth, C.D., Urrutia, J.: Upper bound constructions for untangling planar geometric graphs. SIAM J. Discrete Math. 28(4), 1935–1943 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point sets. In: Fiala, F., Kranakis, E., Sack, J. (eds.) 8th Canadian Conference on Computational Geometry (CCCG 1996), pp. 312–318. Carleton University Press (1996)Google Scholar
  6. 6.
    Chen, G., Yu, X.: Long cycles in 3-connected graphs. J. Comb. Theory Ser. B 86(1), 80–99 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cibulka, J.: Untangling polygons and graphs. Discrete Comput. Geom. 43(2), 402–411 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Da Lozzo, G., Dujmović, V., Frati, F., Mchedlidze, T., Roselli, V.: Drawing planar graphs with many collinear vertices. CoRR abs/1606.03890v3 (2016). http://arxiv.org/abs/1606.03890v3
  9. 9.
    Dujmović, V.: The utility of untangling. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 321–332. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27261-0_27 CrossRefGoogle Scholar
  10. 10.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Evans, W., Kusters, V., Saumell, M., Speckmann, B.: Column planarity and partial simultaneous geometric embedding. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 259–271. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45803-7_22 Google Scholar
  12. 12.
    Goaoc, X., Kratochvíl, J., Okamoto, Y., Shin, C., Spillner, A., Wolff, A.: Untangling a planar graph. Discrete Comput. Geom. 42(4), 542–569 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points (solution to problem e3341). Am. Math. Mon. 98, 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grünbaum, B., Walther, H.: Shortness exponents of families of graphs. J. Comb. Theory Ser. A 14(3), 364–385 (1973)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Untangling planar graphs from a specified vertex position - hard cases. Discrete Appl. Math. 159(8), 789–799 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kratochvíl, J., Vaner, M.: A note on planar partial 3-trees. CoRR abs/1210.8113 (2012). http://arxiv.org/abs/1210.8113
  17. 17.
    Owens, P.J.: Non-hamiltonian simple 3-polytopes whose faces are all 5-gons or 7-gons. Discrete Math. 36(2), 227–230 (1981)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–592 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ravsky, A., Verbitsky, O.: On collinear sets in straight-line drawings. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 295–306. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25870-1_27 CrossRefGoogle Scholar
  21. 21.
    Ravsky, A., Verbitsky, O.: On collinear sets in straight line drawings. CoRR abs/0806.0253 (2011). http://arxiv.org/abs/0806.0253
  22. 22.
    Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(52), 743–768 (1963)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Giordano Da Lozzo
    • 1
  • Vida Dujmović
    • 2
  • Fabrizio Frati
    • 1
  • Tamara Mchedlidze
    • 3
  • Vincenzo Roselli
    • 1
  1. 1.University Roma TreRomeItaly
  2. 2.University of OttawaOttawaCanada
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations