Lowness, Randomness, and Computable Analysis

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10010)


Analytic concepts contribute to our understanding of randomness of reals via algorithmic tests. They also influence the interplay between randomness and lowness notions. We provide a survey.


Cost Function Computable Function Density Randomness Binary Expansion Turing Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Most of the research surveyed in this article was supported by the Marsden Fund of New Zealand.


  1. 1.
    Andrews, U., Cai, M., Diamondstone, D., Jockusch, C., Lempp, S.: Asymptotic density, computable traceability, and 1-randomness. Preprint (2013)Google Scholar
  2. 2.
    Bartoszyński, T., Judah, H.: Set Theory. On the Structure of the Real Line, p. 546. A K Peters, Wellesley (1995)MATHGoogle Scholar
  3. 3.
    Bienvenu, L., Day, A., Greenberg, N., Kučera, A., Miller, J., Nies, A., Turetsky, D.: Computing \(K\)-trivial sets by incomplete random sets. Bull. Symb. Logic 20, 80–90 (2014)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bienvenu, L., Greenberg, N., Kučera, A., Nies, A., Turetsky, D.: Coherent randomness tests and computing the K-trivial sets. J. Eur. Math. Soc. 18(4), 773–812 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bienvenu, L., Hölzl, R., Miller, J., Nies, A.: Denjoy, Demuth, and density. J. Math. Log. 1450004, 35 (2014)MathSciNetMATHGoogle Scholar
  6. 6.
    Brattka, V., Miller, J., Nies, A.: Randomness, differentiability. Trans. AMS 368, 581–605 (2016). arXiv version at
  7. 7.
    Brendle, J., Brooke-Taylor, A., Ng, K.M., Nies, A.: An analogy between cardinal characteristics, highness properties of oracles. In: Proceedings of the 13th Asian Logic Conference: Observation of strains, Guangzhou, China, pp. 1–28. World Scientific (2013).
  8. 8.
    Chaitin, G.: Information-theoretical characterizations of recursive infinite strings. Theor. Comput. Sci. 2, 45–48 (1976)CrossRefMATHGoogle Scholar
  9. 9.
    Day, A.R., Miller, J.S.: Density, forcing and the covering problem. Math. Res. Lett. 22(3), 719–727 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Demuth, O.: The differentiability of constructive functions of weakly bounded variation on pseudo numbers. Comment. Math. Univ. Carolin. 16(3), 583–599 (1975). (Russian)MathSciNetGoogle Scholar
  11. 11.
    Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and Applications of Computability, p. 855. Springer, Heidelberg (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Downey, R., Hirschfeldt, D., Nies, A.: Randomness, computability, and density. SIAM J. Comput. 31(4), 1169–1183 (2002)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Downey, R., Hirschfeldt, D., Nies, A., Stephan, F.: Trivial reals. In: Proceedings of the 7th and 8th Asian Logic Conferences, Singapore, pp. 103–131. Singapore University Press (2003)Google Scholar
  14. 14.
    Downey, R., Nies, A., Weber, R., Yu, L.: Lowness and \(\Pi ^0_2\) nullsets. J. Symbolic Logic 71(3), 1044–1052 (2006)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Downey, R.G., Jockusch Jr., C.G.: T-degrees, jump classes, and strong reducibilities. Trans. Amer. Math. Soc. 30, 103–137 (1987)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Nies, A. (ed).: Logic Blog 2015 (2015).
  17. 17.
    Nies, A. (ed).: Logic Blog 2016 (2016).
  18. 18.
    Figueira, S., Miller, J.S., Nies, A.: Indifferent sets. J. Logic Comput. 19(2), 425–443 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Freer, C., Kjos-Hanssen, B., Nies, A., Stephan, F.: Algorithmic aspects of Lipschitz functions. Computability 3(1), 45–61 (2014)MathSciNetMATHGoogle Scholar
  20. 20.
    Galicki, A., Nies, A.: Effective Borwein-Ditor theorem. In: Proceedings of CiE 2016 (2016)Google Scholar
  21. 21.
    Greenberg, N., Miller, J., Nies, A.: A dense hierarchy of subideals of the \(k\)-trivial degrees (2015)Google Scholar
  22. 22.
    Hirschfeldt, D., Jockusch, C., Kuyper, R., Schupp, P.: Coarse reducibility, algorithmic randomness. arXiv preprint arXiv: 1505.01707 (2015)
  23. 23.
    Hirschfeldt, D., Nies, A., Stephan, F.: Using random sets as oracles. J. Lond. Math. Soc. (2), 75(3), 610–622 (2007)Google Scholar
  24. 24.
    Hirschfeldt, D.R., Jockusch, Jr. C.G., McNicholl, T., Schupp, P.E.: Asymptotic density and the coarse computability bound, Preprint (2013)Google Scholar
  25. 25.
    Jockusch Jr., C.G.: The degrees of bi-immune sets. Z. Math. Logik Grundlagen Math. 15, 135–140 (1969)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Jockusch Jr., C.G.: Semirecursive sets and positive reducibility. Trans. Amer. Math. Soc. 131, 420–436 (1968)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jockusch Jr., C.G., Soare, R.I.: \(\Pi _1^0\) classes and degrees of theories. Trans. Amer. Math. Soc. 173, 33–56 (1972)MathSciNetMATHGoogle Scholar
  28. 28.
    Khan, M.: Lebesgue density and \(\Pi ^0_1\)-classes. J. Symb. Logic (to appear)Google Scholar
  29. 29.
    Kučera, A., Nies, A., Porter, C.: Demuth’s path to randomness. Bull. Symb. Logic 21(3), 270–305 (2015)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Lebesgue, H.: Leçons sur l’Intégration et la recherche des fonctions primitives. Gauthier-Villars, Paris (1904)MATHGoogle Scholar
  31. 31.
    Lebesgue, H.: Sur les intégrales singulières. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 1, 25–117 (1909)Google Scholar
  32. 32.
    Lebesgue, H.: Sur l’intégration des fonctions discontinues. Ann. Sci. École Norm. Sup. (3), 3(27), 361–450 (1910)Google Scholar
  33. 33.
    Martin, D.A., Miller, W.: The degrees of hyperimmune sets. Z. Math. Logik Grundlag. Math. 14, 159–166 (1968)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Miller, J.S., Nies, A.: Randomness and computability: open questions. Bull. Symbolic Logic 12(3), 390–410 (2006)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Miyabe, K., Nies, A., Zhang, J.: Using almost-everywhere theorems from analysis to study randomness. Bull. Symb. Logic 22(3), 305–331 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mohrherr, J.: A refinement of low\(_n\), high\(_n\) for the R.E. degrees. Z. Math. Logik Grundlag. Math. 32(1), 5–12 (1986)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Monin, B., Nies, A.: A unifying approach to the Gamma question. In: Proceedings of Logic in Computer Science (LICS). IEEE press (2015)Google Scholar
  38. 38.
    Nies, A.: Calculus of cost functions. In: Cooper, B., Soskova, M. (eds.) The Incomputable: Observation of Strains: Journeys Beyond the Turing Barrier. Springer, Heidelberg (to appear)Google Scholar
  39. 39.
    Nies, A.: Lowness properties and randomness. Adv. Math. 197, 274–305 (2005)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Nies, A.: Computability and Randomness, vol. 51 of Oxford Logic Guides, p. 444, Paperback version 2011 (2009)Google Scholar
  41. 41.
    Nies, A.: Interactions of computability and randomness. In: Proceedings of the International Congress of Mathematicians, pp. 30–57. World Scientific (2010)Google Scholar
  42. 42.
    Nies, A.: Studying randomness through computation. In: Randomness Through Computation, pp. 207–223. World Scientific (2011)Google Scholar
  43. 43.
    Nies, A.: Differentiability of polynomial time computable functions. In: Mayr, E.W., Portier, N. (eds.) 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). volume 25 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 602–613. Schloss dagstuhl-leibniz-zentrum fuer informatik, Dagstuhl, Germany (2014)Google Scholar
  44. 44.
    Pathak, N.: A computational aspect of the Lebesgue differentiation theorem. J. Log. Anal. 1, Paper 9, 15 (2009)Google Scholar
  45. 45.
    Pathak, N., Rojas, C., Simpson, S.G.: Schnorr randomness and the Lebesgue differentiation theorem. Proc. Amer. Math. Soc. 142(1), 335–349 (2014)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Rupprecht, N.: Effective correspondents to cardinal characteristics in Cichoń’s diagram. Ph.D. thesis, University of Michigan (2010)Google Scholar
  47. 47.
    Sacks, G.E.: A minimal degree below \(\mathbf{0}^{\prime }\). Bull. Amer. Math. Soc. 67, 416–419 (1961)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sacks, G.E.: The recursively enumerable degrees are dense. Ann. Math. (2), 80, 300–312 (1964)Google Scholar
  49. 49.
    Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Lecture Notes in Mathematics, vol. 218. Springer-Verlag, Berlin (1971)Google Scholar
  50. 50.
    Solovay, R..: Handwritten Manuscript Related to Chaitin’s Work, p. 215. IBM Thomas J. Watson Research Center, Yorktown Heights, NY (1975)Google Scholar
  51. 51.
    Spector, C.: On the degrees of recursive unsolvability. Ann. Math. 2(64), 581–592 (1956)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Terwijn, S., Zambella, D.: Algorithmic randomness and lowness. J. Symbolic Logic 66, 1199–1205 (2001)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    V’yugin, V.: Ergodic theorems for individual random sequences. Theor. Comput. Sci. 207(2), 343–361 (1998)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations