Some Questions in Computable Mathematics

  • Denis R. Hirschfeldt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10010)


In honor of Rod Downey’s 60th birthday, this paper discusses a few open problems connected in one way or another with him.


Linear Order Order Type Kolmogorov Complexity Minimal Pair Mass Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Andrews, U., Cai, M., Diamondstone, D., Jockusch, C., Lempp, S.: Asymptotic density, computable traceability, and 1-randomness. Fundam. Math. 234, 41–53 (2016)MathSciNetMATHGoogle Scholar
  2. 2.
    Astor, E.P., Hirschfeldt, D.R., Jockusch Jr., C.G.: Dense computability, upper cones, and minimal pairs, in preparationGoogle Scholar
  3. 3.
    Bienvenu, L., Greenberg, N., Kučera, A., Nies, A., Turetsky, D.: Coherent randomness tests and computing the \(K\)-trivial sets. J. Eur. Math. Soc. 18, 773–812 (2016)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonnet, R.: Stratifications et extension des genres de chaînes dénombrables. C. R. Acad. Sci. Ser. A-B 269, A880–A882 (1969)MATHGoogle Scholar
  5. 5.
    Brattka, V.: Maintainer, Bibliography on Weihrauch complexity, Computability and Complexity in Analysis Network.
  6. 6.
    Cholak, P., McCoy, C.: Effective prime uniqueness (to appear)Google Scholar
  7. 7.
    Cholak, P., Igusa, G.: Density-1-bounding and quasiminimality in the generic degrees. J. Symbolic Logic (to appear)Google Scholar
  8. 8.
    Cholak, P.A., Jockusch Jr., C.G., Slaman, T.A.: On the strength of Ramsey’s Theorem for pairs. J. Symbolic Logic 66, 1–55 (2001). (Corrigendum in J. Symbolic Logic 74, 1438–1439 (2009))MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chong, C.T., Slaman, T.A., Yang, Y.: The metamathematics of stable Ramsey’s Theorem for pairs. J. Am. Math. Soc. 27, 863–892 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chong, C.T., Slaman, T.A., Yang, Y.: The inductive strength of Ramsey’s Theorem for pairs (to appear)Google Scholar
  11. 11.
    Csima, B.F.: Applications of Computability Theory to Prime Models and Differential Geometry. Ph.D. Dissertation, The University of Chicago (2003)Google Scholar
  12. 12.
    Csima, B.F.: Degree spectra of prime models. J. Symbolic Logic 69, 430–442 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dorais, F.G., Dzhafarov, D.D., Hirst, J.L., Mileti, J.R., Shafer, P.: On uniform relationships between combinatorial problems. Trans. Am. Math. Soc. 368, 1321–1359 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Downey, R.: On presentations of algebraic structures. In: Sorbi, A. (ed.) Complexity, Logic, and Recursion Theory, pp. 157–205. Dekker, New York (1997)Google Scholar
  15. 15.
    Downey, R.G.: Computability theory and linear orderings. In: Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W. (eds.) Handbook of Recursive Mathematics, vol. II. Studies in Logic and the Foundations of Mathematics, vol. 139, pp. 823–976 (1998)Google Scholar
  16. 16.
    Downey, R.: Computability, definability, and algebraic structures. In: Downey, R., Decheng, D., Ping, T.S., Hui, Q.Y., Yasugi, M. (eds.) Proceedings of the 7th and 8th Asian Logic Conferences, pp. 63–102. Singapore University Press and World Scientific, Singapore (2003)CrossRefGoogle Scholar
  17. 17.
    Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and Applications of Computability. Springer, New York (2010)CrossRefMATHGoogle Scholar
  18. 18.
    Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. J. Comput. Syst. Sci. 68, 96–114 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Downey, R.G., Hirschfeldt, D.R., Lempp, S., Solomon, R.: A \(\Delta ^0_2\) set with no infinite low subset in either it or its complement. J. Symbolic Logic 66, 1371–1381 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Downey, R.G., Hirschfeldt, D.R., Lempp, S., Solomon, R.: Computability-theoretic and proof-theoretic aspects of partial and linear orderings. Isr. J. Math. 138, 271–290 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Downey, R., Hirschfeldt, D.R., Nies, A.: Randomness, computability, and density. SIAM J. Comput. 31, 1169–1183 (2002)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Downey, R.G., Hirschfeldt, D.R., Nies, A., Terwijn, S.A.: Calibrating randomness. Bull. Symbolic Logic 12, 411–491 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Downey, R., Jockusch, C.G.: Every low Boolean algebra is isomorphic to a recursive one. Proc. Am. Math. Soc. 122, 871–880 (1994)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Downey, R., Jockusch, C., McNicholl, T.H., Schupp, P.: Asymptotic density and the Ershov Hierarchy. Math. Logic Q. 61, 189–195 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Downey, R.G., Jockusch Jr., C.G.: On self-embeddings of computable linear orderings. Ann. Pure Appl. Logic 138, 52–76 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Downey, R.G., Jockusch Jr., C.G., Schupp, P.E.: Asymptotic density and computably enumerable sets. J. Math. Logic 13, 43 (2013). 1350005MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Downey, R.G., Kastermans, B., Lempp, S.: On computable self-embeddings of computable linear orderings. J. Symbolic Logic 74, 1352–1366 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Downey, R.G., Lempp, S.: The proof-theoretic strength of the Dushnik-Miller theorem for countable linear orders. In: Arslanov, M.M., Lempp, S. (eds.) Recursion Theory and Complexity. Series in Logic and Its Applications, vol. 2, pp. 55–57. De Gruyter, Berlin (1999)Google Scholar
  29. 29.
    Downey, R., Lempp, S., Wu, G.: On the complexity of the successivity relation in computable linear orders. J. Math. Logic 10, 83–99 (2010)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Downey, R., Remmel, J.B.: Questions in computable algebra and combinatorics. In: Cholak, P.A., Lempp, S., Lerman, M., Shore, R.A. (eds.) Computability Theory and its Applications (Boulder, CO, 1999). Contemporary Mathematics, vol. 257, pp. 95–125. American Mathematical Society, Providence (2000)Google Scholar
  31. 31.
    Dushnik, B., Miller, E.W.: Concerning similarity transformations of linearly ordered sets. Bull. Am. Math. Soc. 40, 322–326 (1940)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Dzhafarov, D.D.: Strong reductions between combinatorial principles. J. Symbolic Logic (to appear)Google Scholar
  33. 33.
    Dzhafarov, D.D., Patey, L., Solomon, R., Westrick, L.B.: Ramsey’s Theorem for singletons and strong computable reducibility. Proc. Am. Math. Soc. (to appear)Google Scholar
  34. 34.
    Figueira, S., Hirschfeldt, D.R., Miller, J.S., Ng, K.M., Nies, A.: Counting the changes of random \(\Delta ^0_2\) sets. J. Logic Comput. 25, 1073–1089 (2015)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Fokina, E.B., Harizanov, V., Melnikov, A.G.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic. Lecture Notes in Logic, vol. 42, pp. 124–194. Association for Symbolic Logic, La Jolla. Cambridge University Press, Cambridge (2014)Google Scholar
  36. 36.
    Frolov, A., Harizanov, V., Kalimullin, I., Kudinov, O., Miller, R.: Degree spectra of high\(_n\) and nonlow\(_n\) degrees. J. Logic Comput. 22, 755–777 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Gács, P.: Every sequence is reducible to a random one. Inf. Control 70, 186–192 (1986)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Goncharov, S.S.: Problem of the number of non-self-equivalent constructivizations. Algebra Logic 19, 401–414 (1980)CrossRefMATHGoogle Scholar
  39. 39.
    Goncharov, S.S.: Limit equivalent constructivizations. In: Mathematical Logic and the Theory of Algorithms Trudy Instituta Matematiki, vol. 2, pp. 4–12. “Nauka” Sibirskoe otdelenie, Novosibirsk (1982)Google Scholar
  40. 40.
    Goncharov, S.S.: Countable Boolean Algebras and Decidability. Siberian School of Algebra and Logic. Consultants Bureau, New York (1997)MATHGoogle Scholar
  41. 41.
    Goncharov, S.S., Dzgoev, V.D.: Autostability of models. Algebra Logic 19, 28–37 (1980)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Goncharov, S.S., Nurtazin, A.T.: Constructive models of complete decidable theories. Algebra Logic 12, 67–77 (1973)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Harizanov, V.S.: Pure computable model theory. In: Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W. (eds.) Handbook of Recursive Mathematics. Studies in Logic and the Foundations of Mathematics, vol. 138, pp. 3–114. North-Holland, Amsterdam (1998)Google Scholar
  44. 44.
    Harrington, L.: Recursively presentable prime models. J. Symbolic Logic 39, 305–309 (1974)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Harrison-Trainor, M., Melnikov, A., Miller, R., Montalbán, A.: Computable functors and effective interpretability. J. Symbolic Logic (to appear)Google Scholar
  46. 46.
    Hirschfeldt, D.R.: Computable trees, prime models, and relative decidability. Proc. Am. Math. Soc. 134, 1495–1498 (2006)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Hirschfeldt, D.R.: Slicing the Truth: On the Computability Theoretic and Reverse Mathematical Analysis of Combinatorial Principles. Lecture Notes Series, vol. 28. World Scientific, Singapore (2014). Institute for Mathematical Sciences, National University of SingaporeMATHGoogle Scholar
  48. 48.
    Hirschfeldt, D.R., Jockusch Jr., C.G.: On notions of computability theoretic reduction between \(\Pi ^1_2\) principles. J. Math. Logic 16, 1650002 (2016)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Hirschfeldt, D.R., Jockusch Jr., C.G., Kjos-Hanssen, B., Lempp, S., Slaman, T.A.: The strength of some combinatorial principles related to Ramsey’s Theorem for pairs. In: Chong, C., Feng, Q., Slaman, T.A., Woodin, W.H., Yang, Y. (eds.) Computational Prospects of Infinity, Part II: Presented Talks. Lecture Notes Series, vol. 15, pp. 143–161. World Scientific, Singapore (2008). Institute for Mathematical Sciences, National University of SingaporeGoogle Scholar
  50. 50.
    Hirschfeldt, D.R., Jockusch Jr., C.G., Kuyper, R., Schupp, P.E.: Coarse reducibility and algorithmic randomness. J. Symbolic Logic (to appear)Google Scholar
  51. 51.
    Hirschfeldt, D.R., Jockusch Jr., C.G., McNicholl, T., Schupp, P.E.: Asymptotic density and the coarse computability bound. Computability 5, 13–27 (2016)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Hirschfeldt, D.R., Khoussainov, B., Shore, R.A., Slinko, A.M.: Degree spectra and computable dimensions in algebraic structures. Ann. Pure Appl. Logic 115, 71–113 (2002)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Hirschfeldt, D.R., Kramer, K., Miller, R., Shlapentokh, A.: Categoricity properties for computable algebraic fields. Trans. Am. Math. Soc. 367, 3981–4017 (2015)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Hirschfeldt, D.R., Nies, A., Stephan, F.: Using random sets as oracles. J. Lond. Math. Soc. 75, 610–622 (2007)MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Hirschfeldt, D.R., Shore, R.A.: Combinatorial principles weaker than Ramsey’s Theorem for pairs. J. Symbolic Logic 72, 171–206 (2007)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Hirst, J.L.: Combinatorics in Subsystems of Second Order Arithmetic. Ph.D. Dissertation, The Pennsylvania State University (1987)Google Scholar
  57. 57.
    Igusa, G.: Nonexistence of minimal pairs for generic computation. J. Symbolic Logic 78, 511–522 (2013)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Igusa, G.: The generic degrees of density-\(1\) sets, and a characterization of the hyperarithmetic reals. J. Symbolic Logic 80, 1290–1314 (2015)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Jockusch Jr., C.G.: Ramsey’s Theorem and recursion theory. J. Symbolic Logic 37, 268–280 (1972)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Jockusch Jr., C.G., Schupp, P.E.: Generic computability, and asymptotic density. J. Lond. Math. Soc. 85, 472–490 (2012)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Jockusch, C.G., Soare, R.I.: Degrees of orderings not isomorphic to recursive linear orderings. Ann. Pure Appl. Logic 52, 39–64 (1991)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Jullien, P.: Contribution à L’étude des Types D’ordre Dispersés. Ph.D. Dissertation, Université d’Aix-Marseille (1969)Google Scholar
  63. 63.
    Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory and random walks. J. Algebra 264, 665–694 (2003)MathSciNetCrossRefMATHGoogle Scholar
  64. 64.
    Kastermans, B., Lempp, S.: Comparing notions of randomness. Theoret. Comput. Sci. 411, 602–616 (2010)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Kalimullin, I., Khoussainov, B., Melnikov, A.: Limitwise monotonic sequences and degree spectra of structures. Proc. Am. Math. Soc. 141, 3275–3289 (2013)MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Trans. Am. Math. Soc. 363, 5465–5480 (2011)MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Knight, J.F.: Degrees coded in jumps of orderings. J. Symbolic Logic 51, 1034–1042 (1986)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Knight, J.F., Stob, M.: Computable Boolean algebras. J. Symbolic Logic 65, 1605–1623 (2000)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Kučera, A.: Measure, \(\Pi ^0_1\)-classes and complete extensions of PA. In: Ebbinghaus, H.D., Müller, G.H., Sacks, G.E. (eds.) Recursion Theory Week. Lecture Notes in Mathematics, vol. 1141, pp. 245–259. Springer-Verlag, Berlin (1985)CrossRefGoogle Scholar
  70. 70.
    LaRoche, P.: Recursively represented Boolean algebras. Not. Am. Math. Soc. 24, A-552 (1977). (research announcement)Google Scholar
  71. 71.
    Lempp, S., McCoy, C., Miller, R., Solomon, R.: Computable categoricity for trees of finite height. J. Symbolic Logic 70, 151–215 (2005)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Lempp, S., McCoy, C., Miller, R., Solomon, R.: The computable dimension of trees of infinite height. J. Symbolic Logic 70, 111–141 (2005)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Lewis, A.E.M., Barmpalias, G.: Random reals and Lipschitz continuity. Math. Struct. Comput. Sci. 16, 737–749 (2006)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Lewis, A.E.M., Barmpalias, G.: Randomness and the linear degrees of computability. Ann. Pure Appl. Logic 145, 252–257 (2007)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Liu, J.: RT\(^2_2\) does not imply WKL\(_0\). J. Symbolic Logic 77, 609–620 (2012)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Liu, L.: Cone avoiding closed sets. Trans. Am. Math. Soc. 367, 1609–1630 (2015)MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Lynch, N.: Approximations to the halting problem. J. Comput. Syst. Sci. 9, 143–150 (1974)MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Melnikov, A.G.: Enumerations and completely decomposable torsion-free abelian groups. Theor. Comput. Syst. 45, 897–916 (2009)MathSciNetCrossRefMATHGoogle Scholar
  79. 79.
    Merkle, W.: The Kolmogorov-Loveland stochastic sequences are not closed under selecting subsequences. J. Symbolic Logic 68, 1362–1376 (2003)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Merkle, W., Mihailović, N.: On the construction of effectively random sets. J. Symbolic Logic 69, 862–878 (2004)MathSciNetCrossRefMATHGoogle Scholar
  81. 81.
    Merkle, W., Miller, J.S., Nies, A., Reimann, J., Stephan, F.: Kolmogorov-Loveland randomness and stochasticity. Ann. Pure Appl. Logic 138, 183–210 (2006)MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    Meyer, A.R.: An open problem on creative sets. Recursive Funct. Theor. Newsl. 4, 15–16 (1973)Google Scholar
  83. 83.
    Mileti, J.R., Partition Theorems and Computability Theory. Ph.D. Dissertation, University of Illinois at Urbana-Champaign (2004)Google Scholar
  84. 84.
    Millar, T.S.: Foundations of recursive model theory. Ann. Math. Logic 13, 45–72 (1978)MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Millar, T.S.: Omitting types, type spectrums, and decidability. J. Symbolic Logic 48, 171–181 (1983)MathSciNetCrossRefMATHGoogle Scholar
  86. 86.
    Miller, J.S., Nies, A.: Randomness and computability: open questions. Bull. Symbolic Logic 12, 390–410 (2006)MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Miller, R.G.: Computability, Definability, Categoricity, and Automorphisms. Ph.D. Dissertation, The University of Chicago (2000)Google Scholar
  88. 88.
    Miller, R.: The \(\Delta ^0_2\)-spectrum of a linear order. J. Symbolic Logic 66, 470–486 (2001)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Miller, R.: \({\bf d}\)-computable categoricity for algebraic fields. J. Symbolic Logic 74, 1325–1351 (2009)MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    Miller, R., Poonen, B., Schoutens, H., Shlapentokh, A.: A computable functor from graphs to fields (to appear)Google Scholar
  91. 91.
    Monin, B.: Asymptotic density and error-correcting codes (to appear)Google Scholar
  92. 92.
    Monin, B., Nies, A.: A unifying approach to the Gamma question. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, pp. 585–596. IEEE Computer Society (2015)Google Scholar
  93. 93.
    Monin, B., Patey, L.: \(\Pi ^0_1\) encodability and omniscient reductions (to appear)Google Scholar
  94. 94.
    Montalbán, A.: Equivalence between Fraïssé’s Conjecture and Jullien’s Theorem. Ann. Pure Appl. Logic 139, 1–42 (2006)MathSciNetCrossRefMATHGoogle Scholar
  95. 95.
    Muchnik, A.A., Semenov, A.L., Uspensky, V.A.: Mathematical metaphysics of randomness. Theoret. Comput. Sci. 207, 263–317 (1998)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    Patey, L.: The weakness of being cohesive, thin or free in reverse mathematics. Isr. J. Math. (to appear)Google Scholar
  97. 97.
    Patey, L.: Open questions about Ramsey-type statements in reverse mathematics. Bull. Symbolic Logic 22, 151–169 (2016)MathSciNetCrossRefGoogle Scholar
  98. 98.
    Remmel, J.B.: Recursively categorical linear orderings. Proc. Am. Math. Soc. 83, 387–391 (1981)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    Richter, L.J.: Degrees of structures. J. Symbolic Logic 46, 723–731 (1981)MathSciNetCrossRefMATHGoogle Scholar
  100. 100.
    Rosenstein, J.G.: Linear Orderings. Pure and Applied Mathematics, vol. 98. Academic Press Inc., New York-London (1982)MATHGoogle Scholar
  101. 101.
    Schnorr, C.-P.: A unified approach to the definition of a random sequence. Math. Syst. Theor. 5, 246–258 (1971)MathSciNetCrossRefMATHGoogle Scholar
  102. 102.
    Schnorr, C.-P.: Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, vol. 218. Springer, Berlin (1971)Google Scholar
  103. 103.
    Schweber, N.: Do all linear orders in this class have computable copies? (2014).
  104. 104.
    Schweber, N.: Finding limit-nondecreasing sets for certain functions (2016).
  105. 105.
    Seetapun, D., Slaman, T.A.: On the strength of Ramsey’s Theorem. Notre Dame J. Formal Logic 36, 570–582 (1995)MathSciNetCrossRefMATHGoogle Scholar
  106. 106.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic, 1st edn. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  107. 107.
    Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd edn. Cambridge University Press, Cambridge and Association for Symbolic Logic, Poughkeepsie (2009)CrossRefMATHGoogle Scholar
  108. 108.
    Slaman, T.A.: Relative to any nonrecursive set. Proc. Am. Math. Soc. 126, 2117–2122 (1998)MathSciNetCrossRefMATHGoogle Scholar
  109. 109.
    Solovay, R.M.: Hyperarithmetically encodable sets. Trans. Am. Math. Soc. 239, 99–122 (1978)MathSciNetCrossRefMATHGoogle Scholar
  110. 110.
    Soskov, I.N.: Degree spectra and co-spectra of structures, Annuaire de l’Université de Sofia “St. Kliment Ohrisdski", Faculté de Mathématiques et Informatique 96, 45–68(2004)Google Scholar
  111. 111.
    Specker, E.: Ramsey’s Theorem does not hold in recursive set theory. In: Gandy, R.O., Yates, C.E.M. (eds.) Logic Colloquium 1969. Studies in Logic and the Foundations of Mathematics, pp. 439–442. North-Holland, Amsterdam (1971)Google Scholar
  112. 112.
    Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Math. 16, 386–389 (1930)MATHGoogle Scholar
  113. 113.
    Terwijn, S.A.: Computability and Measure. Ph.D. Dissertation, University of Amsterdam (1998)Google Scholar
  114. 114.
    Thurber, J.: Degrees of Boolean Algebras. Ph.D. Dissertation, University of Notre Dame (1994)Google Scholar
  115. 115.
    Wang, Y.: Randomness and Complexity. Ph.D. Dissertation, University of Heidelberg (1996)Google Scholar
  116. 116.
    Wang, Y.: A separation of two randomness concepts. Inf. Process. Lett. 69, 115–118 (1999)MathSciNetCrossRefMATHGoogle Scholar
  117. 117.
    Wehner, S.: Enumerations, countable structures, and Turing degrees. Proc. Am. Math. Soc. 126, 2131–2139 (1998)MathSciNetCrossRefMATHGoogle Scholar
  118. 118.
    Weihrauch, K.: The degrees of discontinuity of some translators between representations of the real numbers. Technical report TR-92-050. International Computer Science Institute, Berkeley (1992)Google Scholar
  119. 119.
    Weihrauch, K.: The TTE-interpretation of three hierarchies of omniscience principles. In: Informatik Berichte FernUniversität Hagen, vol. 130. Hagen (1992)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations