Follow-the-Leader Approximations of Macroscopic Models for Vehicular and Pedestrian Flows

  • M. Di FrancescoEmail author
  • S. Fagioli
  • M. D. Rosini
  • G. Russo
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


We review the recent results and present new ones on a deterministic follow-the-leader particle approximation of first-and second-order models for traffic flow and pedestrian movements. We start by constructing the particle scheme for the first-order Lighthill–Whitham–Richards (LWR) model for traffic flow. The approximation is performed by a set of ODEs following the position of discretized vehicles seen as moving particles. The convergence of the scheme in the many particle limit toward the unique entropy solution of the LWR equation is proven in the case of the Cauchy problem on the real line. We then extend our approach to the initial–boundary value problem (IBVP) with time-varying Dirichlet data on a bounded interval. In this case, we prove that our scheme is convergent strongly in \(\mathbf {L^{1}}\) up to a subsequence. We then review extensions of this approach to the Hughes model for pedestrian movements and to the second-order Aw–Rascle–Zhang (ARZ) model for vehicular traffic. Finally, we complement our results with numerical simulations. In particular, the simulations performed on the IBVP and the ARZ model suggest the consistency of the corresponding schemes, which is easy to prove rigorously in some simple cases.


Riemann Problem Entropy Solution Particle Method Vehicular Traffic Particle Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MDF and MDR are supported by the GNAMPA (Italian group of Analysis, Probability, and Applications) project Geometric and qualitative properties of solutions to elliptic and parabolic equations. SF and MDR are supported by the GNAMPA (Italian group of Analysis, Probability, and Applications) project Analisi e stabilità per modelli di equazioni alle derivate parziali nella matematica applicata. GR was partially supported by ITN-ETN Marie Curie Actions ModCompShock—‘Modeling and Computation of Shocks and Interfaces.’


  1. 1.
    D. Amadori and R. M. Colombo. Continuous dependence for \(2\times 2\) conservation laws with boundary. J. Differential Equations, 138(2):229–266, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    D. Amadori and M. Di Francesco. The one-dimensional Hughes model for pedestrian flow: Riemann-type solutions. Acta Math. Sci. Ser. B Engl. Ed., 32(1):259–280, 2012.Google Scholar
  3. 3.
    D. Amadori, P. Goatin, and M. D. Rosini. Existence results for Hughes’ model for pedestrian flows. J. Math. Anal. Appl., 420(1):387–406, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. 2nd ed. Lectures in Mathematics, ETH Zürich. Basel: Birkhäuser., 2008.Google Scholar
  5. 5.
    B. Andreianov, C. Donadello, U. Razafison, J. Y. Rolland, and M. D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 11(1):29–47, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Andreianov, C. Donadello, and M. D. Rosini. A second-order model for vehicular traffics with local point constraints on the flow. Mathematical Models and Methods in Applied Sciences, 26(04):751–802, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.-P. Aubin. Macroscopic traffic models: Shifting from densities to ‘celerities’. Applied Mathematics and Computation, 217(3):963–971, 2010.Google Scholar
  8. 8.
    A. Aw, A. Klar, T. Materne, and M. Rascle. Derivation of continuum traffic flow models from microscopic Follow-the-Leader models. SIAM Journal on Applied Mathematics, 63(1):259–278, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Aw and M. Rascle. Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math., 60(3):916–938 (electronic), 2000.Google Scholar
  10. 10.
    C. Bardos, A. Y. le Roux, and J.-C. Nédélec. First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations, 4(9):1017–1034, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N. Bellomo and A. Bellouquid. On the modeling of crowd dynamics: looking at the beautiful shapes of swarms. Networks and Heterogeneous Media, 6:383–399, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    N. Bellomo, M. Delitala, and V. Coscia. On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling. Math. Models Methods Appl. Sci., 12(12):1801–1843, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N. Bellomo and C. Dogbe. On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev., 53(3):409–463, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    F. Berthelin, P. Degond, M. Delitala, and M. Rascle. A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal., 187(2):185–220, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    F. Bolley, Y. Brenier, and G. Loeper. Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Equ., 2(1):91–107, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Brenier and E. Grenier. Sticky particles and scalar conservation laws. SIAM J. Numer. Anal., 35(6):2317–2328 (electronic), 1998.Google Scholar
  17. 17.
    A. Bressan. Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl., 170(2):414–432, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem.Google Scholar
  19. 19.
    M. Burger, M. Di Francesco, P. A. Markowich, and M.-T. Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete Contin. Dyn. Syst. Ser. B, 19(5):1311–1333, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J. A. Carrillo, M. Di Francesco, and C. Lattanzio. Contractivity of Wasserstein metrics and asymptotic profiles for scalar conservation laws. J. Differential Equations, 231(2):425–458, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    J. A. Carrillo, S. Martin, and M.-T. Wolfram. An improved version of the Hughes model for pedestrian flow. Mathematical Models and Methods in Applied Sciences, 26(04):671–697, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    C. Chalons and P. Goatin. Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling. Commun. Math. Sci., 5(3):533–551, 09 2007.Google Scholar
  23. 23.
    G.-Q. Chen and M. Rascle. Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws. Arch. Ration. Mech. Anal., 153(3):205–220, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    R. M. Colombo and A. Marson. A Hölder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759–772, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    R. M. Colombo and M. D. Rosini. Well posedness of balance laws with boundary. J. Math. Anal. Appl., 311(2):683–702, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    R. M. Colombo and E. Rossi. On the micro-macro limit in traffic flow. Rend. Semin. Mat. Univ. Padova, 131:217–235, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    C. M. Dafermos. Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl., 38:33–41, 1972.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C. F. Daganzo. A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transportation Research Part B: Methodological, 39(2):187–196, 2005.CrossRefGoogle Scholar
  29. 29.
    M. Di Francesco, S. Fagioli, and M. D. Rosini. Many particle approximation for the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences and Engineering (MBE), 14(1), February 2017 (online).Google Scholar
  30. 30.
    M. Di Francesco, S. Fagioli, and M. D. Rosini. Deterministic particle approximation of scalar conservation laws. arXiv preprint arXiv:1602.06153, 2016.
  31. 31.
    M. Di Francesco, S. Fagioli, M. D. Rosini, and G. Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic and Related Models, 10(1):215–237, 2017.Google Scholar
  32. 32.
    M. Di Francesco, P. A. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. On the Hughes’ model for pedestrian flow: the one-dimensional case. J. Differential Equations, 250(3):1334–1362, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    M. Di Francesco and M. D. Rosini. Rigorous derivation of nonlinear scalar conservation laws from Follow-the-Leader type models via many particle limit. Archive for Rational Mechanics and Analysis, 217(3):831–871, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    R. J. DiPerna. Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 20(1):187–212, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    R. L. Dobrušin. Vlasov equations. Funktsional. Anal. i Prilozhen., 13(2):48–58, 96, 1979.Google Scholar
  36. 36.
    F. Dubois and P. LeFloch. Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations, 71(1):93–122, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    N. El-Khatib, P. Goatin, and M. D. Rosini. On entropy weak solutions of Hughes’ model for pedestrian motion. Z. Angew. Math. Phys., 64(2):223–251, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    P. A. Ferrari. Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields, 91(1):81–101, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    P. L. Ferrari and P. Nejjar. Shock fluctuations in flat TASEP under critical scaling. J. Stat. Phys., 160(4):985–1004, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    R. E. Ferreira and C. I. Kondo. Glimm method and wave-front tracking for the Aw-Rascle traffic flow model. Far East J. Math. Sci., 43:203–233, 2010.MathSciNetzbMATHGoogle Scholar
  41. 41.
    J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18:697–715, 1965.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    P. Goatin and M. Mimault. The wave-front tracking algorithm for Hughes’ model of pedestrian motion. SIAM J. Sci. Comput., 35(3):B606–B622, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    M. Godvik and H. Hanche-Olsen. Existence of solutions for the Aw-Rascle traffic flow model with vacuum. Journal of Hyperbolic Differential Equations, 05(01):45–63, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    L. Gosse and G. Toscani. Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal., 43(6):2590–2606 (electronic), 2006.Google Scholar
  45. 45.
    H. Greenberg. An analysis of traffic flow. Operations Research, 7(1):79–85, 1959.MathSciNetCrossRefGoogle Scholar
  46. 46.
    B. Greenshields. A study of traffic capacity. Proceedings of the Highway Research Board, 14:448–477, 1935.Google Scholar
  47. 47.
    D. Hoff. The Sharp Form of Oleinik’s Entropy Condition in Several Space Variables. Transactions of the American Mathematical Society, 276(2):707–714, 1983.MathSciNetzbMATHGoogle Scholar
  48. 48.
    H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, volume 152. Springer, 2015.Google Scholar
  49. 49.
    R. L. Hughes. A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological, 36(6):507–535, 2002.Google Scholar
  50. 50.
    R. L. Hughes. The flow of human crowds. In Annual review of fluid mechanics, Vol. 35, volume 35 of Annu. Rev. Fluid Mech., pages 169–182. Annual Reviews, Palo Alto, CA, 2003.Google Scholar
  51. 51.
    C. Kipnis and C. Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.Google Scholar
  52. 52.
    S. N. Kruzhkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.Google Scholar
  53. 53.
    M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955.Google Scholar
  54. 54.
    P.-L. Lions, B. Perthame, and E. Tadmor. A kinetic formulation of multidimensional scalar conservation laws and related equations. J. American Math. Society, 7:169–191, 1994.MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    D. Matthes and H. Osberger. Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation. ESAIM Math. Model. Numer. Anal., 48(3):697–726, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    C. B. Morrey, Jr. On the derivation of the equations of hydrodynamics from statistical mechanics. Comm. Pure Appl. Math., 8:279–326, 1955.MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    H. Neunzert, A. Klar, and J. Struckmeier. Particle methods: theory and applications. In ICIAM 95 (Hamburg, 1995), volume 87 of Math. Res., pages 281–306. Akademie Verlag, Berlin, 1996.Google Scholar
  58. 58.
    G. F. Newell. A simplified theory of kinematic waves in highway traffic. Transportation Research Part B: Methodological, 27(4):281–313, 1993.CrossRefGoogle Scholar
  59. 59.
    O. A. Oleinik. Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Transl. (2), 26:95–172, 1963.MathSciNetGoogle Scholar
  60. 60.
    L. Onsager. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2), 65:117–149, 1944.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathematical models. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science. Springer New York, 2009.Google Scholar
  62. 62.
    L. A. Pipes. Car following models and the fundamental diagram of road traffic. Transp. Res., 1:21–29, 1967.CrossRefGoogle Scholar
  63. 63.
    P. I. Richards. Shock waves on the highway. OPERATIONS RESEARCH, 4(1):42–51, 1956.MathSciNetCrossRefGoogle Scholar
  64. 64.
    M. D. Rosini. Macroscopic models for vehicular flows and crowd dynamics: theory and applications. Understanding Complex Systems. Springer, Heidelberg, 2013.CrossRefzbMATHGoogle Scholar
  65. 65.
    G. Russo. Deterministic diffusion of particles. Comm. on Pure and Applied Mathematics, 43:697–733, 1990.MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    M. Twarogowska, P. Goatin, and R. Duvigneau. Macroscopic modeling and simulations of room evacuation. Appl. Math. Model., 38(24):5781–5795, 2014.MathSciNetCrossRefGoogle Scholar
  67. 67.
    R. T. Underwood. Speed, volume, and density relationship. In Quality and theory of traffic flow: a symposium, pages 141–188. Greenshields, B.D. and Bureau of Highway Traffic, Yale University, 1961.Google Scholar
  68. 68.
    C. Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.Google Scholar
  69. 69.
    H. M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research Part B: Methodological, 36(3):275–290, 2002.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • M. Di Francesco
    • 1
    Email author
  • S. Fagioli
    • 1
  • M. D. Rosini
    • 2
  • G. Russo
    • 3
  1. 1.DISIM, Università degli Studi dell’AquilaL’AquilaItaly
  2. 2.Instytut MatematykiUniwersytet Marii Curie-SkłodowskiejLublinPoland
  3. 3.Dipartimento di Matematica ed InformaticaUniversità di CataniaCataniaItaly

Personalised recommendations