Interaction Network, State Space, and Control in Social Dynamics

  • Aylin Aydoğdu
  • Marco Caponigro
  • Sean McQuade
  • Benedetto Piccoli
  • Nastassia Pouradier Duteil
  • Francesco Rossi
  • Emmanuel Trélat
Chapter

Abstract

In the present chapter, we study the emergence of global patterns in large groups in first- and second-order multiagent systems, focusing on two ingredients that influence the dynamics: the interaction network and the state space. The state space determines the types of equilibrium that can be reached by the system. Meanwhile, convergence to specific equilibria depends on the connectivity of the interaction network and on the interaction potential. When the system does not satisfy the necessary conditions for convergence to the desired equilibrium, control can be exerted, both on finite-dimensional systems and on their mean-field limit.

References

  1. 1.
    G. Albi, M. Bongini, E. Cristiani, and D. Kalise. Invisible control of self-organizing agents leaving unknown environments. SIAM Journal on Applied Mathematics. to appear.Google Scholar
  2. 2.
    G. Albi, M. Herty, and L. Pareschi. Kinetic description of optimal control problems and applications to opinion consensus. Communications in Mathematical Sciences, 13(6):1407–1429, 2015.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    G. Albi and L. Pareschi. Selective model-predictive control for flocking systems. preprint.Google Scholar
  4. 4.
    G. Albi and L. Pareschi. Modeling of self-organized systems interacting with a few indi- viduals: from microscopic to macroscopic dynamics. Applied Mathematics Letters, 26:397–401, 2013.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    G. Albi, L. Pareschi, and M. Zanella. Boltzmann-type control of opinion consensus through leaders. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2028), 2014.MATHGoogle Scholar
  6. 6.
    M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4):1232–1237, 2008.CrossRefGoogle Scholar
  7. 7.
    M. Bardi and F. S. Priuli. LQG mean-field games with ergodic cost. In 52nd IEEE Conference on Decision and Control, pages 2493–2498, Dec 2013.Google Scholar
  8. 8.
    M. Bardi and F. S. Priuli. Linear-quadratic \(n\)-person and mean-field games with ergodic cost. SIAM Journal on Control and Optimization, 52(5):3022–3052, 2014.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    L. Behera and F. Schweitzer. On spatial consensus formation: Is the Sznajd model different from a voter model? International Journal of Modern Physics C, 14(10):1331–1354, 2003.CrossRefGoogle Scholar
  10. 10.
    V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. Continuous-time average-preserving opinion dynamics with opinion-dependent communications. SIAM Journal on Control and Optimization, 48(8):5214–5240, 2010.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    F. Bullo, J. Cortés, and S. Martínez. Distributed control of robotic networks: a mathematical approach to motion coordination algorithms. Princeton series in applied mathematics. Princeton University Press, Princeton, 2009.CrossRefMATHGoogle Scholar
  12. 12.
    J. A. Cañizo, J. A. Carillo, and J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion. Mathematical Models and Methods in Applied Sciences, 21(03):515–539, 2011.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    P. E. Caines. Encyclopedia of Systems and Control, chapter Mean Field Games, pages 1–6. Springer London, London, 2013.Google Scholar
  14. 14.
    M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and optimal control of the Cucker–Smale model. Mathematical Control and Related Fields, 3:447–466, 2013.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and control of alignment models. Mathematical Models and Methods in Applied Sciences, 25(3):521–564, 2015.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. Caponigro, A. C. Lai, and B. Piccoli. A nonlinear model of opinion formation on the sphere. Discrete and Continuous Dynamical Systems Ser. A, (9):4241–4268, 2015.Google Scholar
  17. 17.
    J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, chapter Particle, kinetic, and hydrodynamic models of swarming, pages 297–336. Birkhäuser Boston, Boston, 2010.Google Scholar
  18. 18.
    F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability implies feedback stabilization. Automatic Control, IEEE Transactions on, 42(10):1394–1407, 1997.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    R. Colombo and N. Pogodaev. On the control of moving sets: positive and negative confinement results. SIAM J. Control Optim., 51(1):380–401, 2013.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    I. Couzin, J. Krause, R. James, G. Ruxton, and N. Franks. Collective memory and spatial sorting in animal groups. J Theor Biol, 218(1–11), 2002.Google Scholar
  21. 21.
    E. Cristiani, P. Frasca, and B. Piccoli. Effects of anisotropic interactions on the structure of animal groups. Journal of mathematical biology, 62(4):569–588, 2011.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    E. Cristiani, B. Piccoli, and C. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. SIAM Multiscale Modeling and Simulations, 9:155–182, 2011.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Transactions on Automatic Control, 52:852–862, 2007.MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. H. De Groot. Reaching a consensus. Journal of American Statistical Association, 69:118 – 121, 1974.CrossRefMATHGoogle Scholar
  25. 25.
    G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among interacting agents. Advances in Complex Systems, 3(01n04):87–98, 2000.Google Scholar
  26. 26.
    P. Degond, M. Herty, and J.-G. Liu. Mean-field games and model predictive control. preprint.Google Scholar
  27. 27.
    P. Degond, J.-G. Liu, and C. Ringhofer. Large-scale dynamics of mean-field games driven by local Nash equilibria. Journal of Nonlinear Science, 24(1):93–115, 2013.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    P. Degond and S. Motsch. Continuum limit of self-driven particles with orientation interaction. Mathematical Models and Methods in Applied Sciences, 18(supp01):1193–1215, 2008.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    P. Degond and S. Motsch. Large scale dynamics of the persistent turning walker model of fish behavior. Journal of Statistical Physics, 131(6):989–1021, 2008.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    J. C. Dittmer. Diskrete nichtlineare modelle der konsensbildung. Diploma thesis Universität Bremen, 2000.Google Scholar
  31. 31.
    F. Dörfler, M. Chertkov, and F. Bullo. Synchronization in complex oscillator networks and smart grids. Proceedings of the National Academy of Sciences, 110(6):2005–2010, 2013.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-propelled particles with soft-core interactions: Patterns, stability, and collapse. Phys. Rev. Lett., 96:104302, Mar 2006.Google Scholar
  33. 33.
    M. Fornasier, B. Piccoli, N. Pouradier Duteil, and F. Rossi. Mean-field optimal control by leaders. In 53rd IEEE Conference on Decision and Control, pages 6957–6962, Dec 2014.Google Scholar
  34. 34.
    M. Fornasier, B. Piccoli, and F. Rossi. Mean-field sparse optimal control. Philosophilcal Transaction of the Royal Society A, 372, 2014.Google Scholar
  35. 35.
    M. Fornasier and F. Solombrino. Mean-field optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 20(4):1123–1152, 2014.Google Scholar
  36. 36.
    J. R. P. French. A formal theory of social power. Psychological Review, 63:181–194, 1956.Google Scholar
  37. 37.
    I. Giardina. Collective behavior in animal groups: theoretical models and empirical studies. Human Frontier Science Program Journal, (205–219), 2008.Google Scholar
  38. 38.
    O. Guéant, J.-M. Lasry, and P.-L. Lions. Paris-Princeton Lectures on Mathematical Finance 2010, chapter Mean Field Games and Applications, pages 205–266. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.Google Scholar
  39. 39.
    S. Y. Ha, T. Ha, and J. H. Kim. Emergent behavior of a Cucker–Smale type particle model with nonlinear velocity couplings. IEEE Transactions on Automatic Control, 55(7):1679–1683, July 2010.Google Scholar
  40. 40.
    S.-Y. Ha, K. Lee, and D. Levy. Emergence of time-asymptotic flocking in a stochastic Cucker–Smale system. Commun. Math. Sci., 7(2):453–469, 06 2009.Google Scholar
  41. 41.
    S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. arXiv preprint arXiv:0806.2182, 2008.
  42. 42.
    F. Harary. A criterion for unanimity in french’s theory of social power. Cartwright D (Ed.), Studies in Social Power, 1959.Google Scholar
  43. 43.
    J. Haskovec. Flocking dynamics and mean-field limit in the Cucker–Smale-type model with topological interactions. Physica D: Nonlinear Phenomena, 261:42 – 51, 2013.MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    R. Hegselmann and A. Flache. Understanding complex social dynamics – a plea for cellular automata based modelling. Journal of Artificial Societies and Social Simulation, 1(3), 1998.Google Scholar
  45. 45.
    R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial Societies and Social Simulation, 5(3), 2002.Google Scholar
  46. 46.
    M. Herty, L. Pareschi, and S. Steffensen. Mean–field control and Riccati equations. Networks and Heterogeneous Media, 10(3):699–715, 2015.MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.MathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Huang, R. P. Malham, and P. E. Caines. Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst., 6(3):221–252, 2006.MathSciNetMATHGoogle Scholar
  49. 49.
    A. Huth and C. Wissel. The simulation of the movement of fish schools. Journal of Theoretical Biology, 156:365–385, 1992.CrossRefGoogle Scholar
  50. 50.
    A. Isidori. Nonlinear control systems. Springer Science & Business Media, 2013.Google Scholar
  51. 51.
    P. Jabin and S. Motsch. Clustering and asymptotic behavior in opinion formation. Journal of Differential Equations, 257(11):4165–4187, 12 2014.Google Scholar
  52. 52.
    A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. Automatic Control, IEEE Transactions on, 48(6):988–1001, 2003.MathSciNetCrossRefGoogle Scholar
  53. 53.
    J. M. Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 08 2000.Google Scholar
  54. 54.
    J. Krause and G. Ruxton. Living in groups. Oxford series in ecology and evolution. Oxford University Press, New York, 2002.Google Scholar
  55. 55.
    U. Krause. Soziale dynamiken mit vielen interakteuren, eine problemskizze. Krause U and Stöckler M (Eds.) Modellierung und Simulation von Dynamiken mit vielen interagierenden Akteuren, Universität Bremen, pages 37 – 51, 1997.Google Scholar
  56. 56.
    U. Krause. A discrete nonlinear and non—autonomous model of consensus formation. Elaydi S, Ladas G, Popenda J and Rakowski J (Eds.), Communications in Difference Equations, Amsterdam: Gordon and Breach Publ., pages 227 – 236, 2000.Google Scholar
  57. 57.
    Y. Kuramoto. Cooperative dynamics of oscillator community a study based on lattice of rings. Progress of Theoretical Physics Supplement, 79:223–240, 1984.CrossRefGoogle Scholar
  58. 58.
    A. Lachapelle and M.-T. Wolfram. On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transportation Research Part B: Methodological, 45(10):1572–1589, 2011.CrossRefGoogle Scholar
  59. 59.
    J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007.MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    K. Lehrer. Social consensus and rational agnoiology. Synthese, 31:141 – 160, 1975.CrossRefGoogle Scholar
  61. 61.
    N. Leonard. Multi-agent system dynamics: Bifurcation and behavior of animal groups. Plenary paper IFAC Symposium on Nonlinear Control Systems, Toulouse, France., 2013.Google Scholar
  62. 62.
    J. Maciejowski, P. Goulart, and E. Kerrigan. Constrained Control Using Model Predictive Control, pages 273–291. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.Google Scholar
  63. 63.
    L. Moreau. Stability of continuous-time distributed consensus algorithms. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages 3998–4003. IEEE, 2004.Google Scholar
  64. 64.
    L. Moreau. Stability of multiagent systems with time-dependent communication links. Automatic Control, IEEE Transactions on, 50(2):169–182, 2005.MathSciNetCrossRefGoogle Scholar
  65. 65.
    S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Review, 56(4):577–621, 2014.MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.CrossRefGoogle Scholar
  67. 67.
    L. Pareschi and G. Toscani. Interacting multiagent systems: kinetic equations and Monte Carlo methods. OUP Oxford, 2013.Google Scholar
  68. 68.
    J. Parrish, S. Viscido, and D. Grunbaum. Self-organized fish schools: an examination of emergent properties. The Biological Bulletin, 202:296–305, 2002.CrossRefGoogle Scholar
  69. 69.
    L. Perea, P. Elosegui, and G. Gómez. Extension of the Cucker–Smale control law to space flight formations. Journal of Guidance, Control, and Dynamics, 32:527–537, 2009.CrossRefGoogle Scholar
  70. 70.
    B. Piccoli, N. Pouradier Duteil, and B. Scharf. Optimal control of a collective migration model. Mathematical Models and Methods in Applied Sciences (to appear), 2015.Google Scholar
  71. 71.
    B. Piccoli, F. Rossi, and E. Trélat. Control to flocking of the kinetic Cucker–Smale model. SIAM Journal on Mathematical Analysis, 47(6):4685–4719, 2015.MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent systems from a graph-theoretic perpective. SIAM Journal on Control and Optimization, 48(1):162–186, 2009.MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    A. Sarlette. Geometry and symmetries in coordination control. PhD thesis, Université de Liège, 2009.Google Scholar
  74. 74.
    A. Sarlette and R. Sepulchre. Consensus optimization on manifolds. SIAM Journal on Control and Optimization, 48(1):56–76, 2009.MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    L. Scardovi, A. Sarlette, and R. Sepulchre. Synchronization and balancing on the N-torus. Systems & Control Letters, 56(5):335 – 341, 2007.MathSciNetCrossRefMATHGoogle Scholar
  76. 76.
    R. Sepulchre. Consensus on nonlinear spaces. Annual reviews in control, 35(1):56–64, 2011.CrossRefMATHGoogle Scholar
  77. 77.
    R. Sepulchre, D. Paley, N. E. Leonard, et al. Stabilization of planar collective motion: All-to-all communication. Automatic Control, IEEE Transactions on, 52(5):811–824, 2007.MathSciNetCrossRefGoogle Scholar
  78. 78.
    R. Sepulchre, D. Paley, N. E. Leonard, et al. Stabilization of planar collective motion with limited communication. Automatic Control, IEEE Transactions on, 53(3):706–719, 2008.MathSciNetCrossRefGoogle Scholar
  79. 79.
    P. Sobkowicz. Modelling opinion formation with physics tools: Call for closer link with reality. Journal of Artificial Societies and Social Simulation, 12(1):11, 2009.Google Scholar
  80. 80.
    E. D. Sontag. Mathematical control theory: deterministic finite dimensional systems, volume 6. Springer Science & Business Media, 2013.Google Scholar
  81. 81.
    S. H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(1–4):1 – 20, 2000.MathSciNetCrossRefMATHGoogle Scholar
  82. 82.
    D. Sumpter. The principles of collective animal behaviour. Philosophilcal Transaction of the Royal Society B, 361:5–22, 2006.CrossRefGoogle Scholar
  83. 83.
    K. Sznajd-Weron and J. Sznajd. Opinion evolution in closed community. International Journal of Modern Physics C, 11(06):1157–1165, 2000.CrossRefMATHGoogle Scholar
  84. 84.
    G. Toscani. Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481–496, 09 2006.Google Scholar
  85. 85.
    J. N. Tsitsiklis. Problems in Decentralized Decision making and Computation. PhD thesis, MIT, 1984.Google Scholar
  86. 86.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226–1229, Aug 1995.MathSciNetCrossRefGoogle Scholar
  87. 87.
    C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Archive for Rational Mechanics and Analysis, 143(3):273–307, 1998.MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393(6684):440–442, 06 1998.Google Scholar
  89. 89.
    H. Whitney. On singularities of mappings of Euclidean spaces. I. mappings of the plane into the plane. Annals of Mathematics, 62(3):374–410, 1955.MathSciNetCrossRefMATHGoogle Scholar
  90. 90.
    S. Wongkaew, M. Caponigro, and A. Borzi. On the control through leadership of the Hegselmann-Krause opinion formation model. Mathematical Models and Methods in Applied Sciences, 25(03):565–585, 2015.MathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini, and D. J. T. Sumpter. Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National Academy of Sciences, 106(14):5464–5469, 2009.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aylin Aydoğdu
    • 1
  • Marco Caponigro
    • 2
  • Sean McQuade
    • 1
  • Benedetto Piccoli
    • 1
  • Nastassia Pouradier Duteil
    • 1
  • Francesco Rossi
    • 3
  • Emmanuel Trélat
    • 4
    • 5
  1. 1.Rutgers UniversityCamdenUSA
  2. 2.Conservatoire National des Arts et MétiersParisFrance
  3. 3.Aix Marseille Université, CNRS, ENSAMUniversité de ToulonMarseilleFrance
  4. 4.Sorbonne UniversitésParisFrance
  5. 5.Laboratoire Jacques-Louis LionsInstitut Universitaire de FranceParisFrance

Personalised recommendations