A Parallel Model for Heterogeneous Cluster

  • Thiago Marques Soares
  • Rodrigo Weber dos Santos
  • Marcelo LoboscoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10049)


The LogP model was used to measure the effects of latency, occupancy and bandwidth on distributed memory multiprocessors. The idea was to characterize distributed memory multiprocessor using these key parameters, studying their impacts on performance in simulation environments. This work proposes a new model, based on LogP, that describes the impacts on performance of applications executing on a heterogeneous cluster. This model can be used, in a near future, to help choose the best way to split a parallel application to be executed on this architecture. The model considers that a heterogeneous cluster is composed by distinct types of processors, accelerators and networks.


Performance modeling Parallel architectures Heterogeneous clusters Scheduling 


  1. 1.
    Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporating long messages into the logP model one step closer towards a realistic model for parallel computation. In: Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures, pp. 95–105. ACM (1995)Google Scholar
  2. 2.
    Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)CrossRefGoogle Scholar
  3. 3.
    Bosque, J.L., Pastor, L.: A parallel computational model for heterogeneous clusters. IEEE Trans. Parallel Distrib. Syst. 17(12), 1390 (2006)CrossRefGoogle Scholar
  4. 4.
    Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramonian, R., Von Eicken, T.: LogP: towards a realistic model of parallel computation, vol. 28. ACM (1993)Google Scholar
  5. 5.
    Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and application availability in high performance network interfaces. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) EuroPVM/MPI 2006. LNCS, vol. 4192, pp. 331–338. Springer, Heidelberg (2006). doi: 10.1007/11846802_46 CrossRefGoogle Scholar
  6. 6.
    Holt, C., Heinrich, M., Singh, J.P., Rothberg, E., Hennessy, J.: The effects of latency, occupancy, and bandwidth in distributed shared memory multiprocessors. Stanford University, Computer Systems Laboratory (1995)Google Scholar
  7. 7.
    Kielmann, T., Bal, H.E., Verstoep, K.: Fast measurement of LogP parameters for message passing platforms. In: Rolim, J. (ed.) IPDPS 2000. LNCS, vol. 1800, pp. 1176–1183. Springer, Heidelberg (2000). doi: 10.1007/3-540-45591-4_162 CrossRefGoogle Scholar
  8. 8.
    Lastovetsky, A., Mkwawa, I.H., O’Flynn, M.: An accurate communication model of a heterogeneous cluster based on a switch-enabled ethernet network. In: 12th International Conference on Parallel and Distributed Systems, ICPADS 2006, vol. 2, p. 6. IEEE (2006)Google Scholar
  9. 9.
    Lastovetsky, A., Rychkov, V.: Building the communication performance model of heterogeneous clusters based on a switched network. In: IEEE International Conference on Cluster Computing, 2007, pp. 568–575. IEEE (2007)Google Scholar
  10. 10.
    LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2007)Google Scholar
  11. 11.
    Martin, R.P., Vahdat, A.M., Culler, D.E., Anderson, T.E.: Effects of communication latency, overhead, and bandwidth in a cluster architecture, vol. 25. ACM (1997)Google Scholar
  12. 12.
    Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational modeling of the innate immune system. BMC Bioinform. 14(Suppl 6), S7 (2007)CrossRefGoogle Scholar
  13. 13.
    Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., M. Quintela, B., Macedo, G.C., Santos, R.W., Lobosco, M.: A three-dimensional computational model of the innate immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 691–706. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31125-3_52 CrossRefGoogle Scholar
  14. 14.
    Soares, T.M., Xavier, M.P., Pigozzo, A.B., Campos, R.S., Santos, R.W., Lobosco, M.: Performance evaluation of a human immune system simulator on a GPU cluster. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 458–468. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21909-7_44 CrossRefGoogle Scholar
  15. 15.
    Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Thiago Marques Soares
    • 1
  • Rodrigo Weber dos Santos
    • 1
  • Marcelo Lobosco
    • 1
    Email author
  1. 1.Graduate Program in Computational ModellingFederal University of Juiz de ForaJuiz de ForaBrazil

Personalised recommendations