Revocable Decentralized Multi-Authority Functional Encryption

  • Hikaru TsuchidaEmail author
  • Takashi Nishide
  • Eiji Okamoto
  • Kwangjo Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10095)


Attribute-Based Encryption (ABE) is regarded as one of the most desirable cryptosystems realizing data security in the cloud storage systems. Functional Encryption (FE) which includes ABE and the ABE system with multiple authorities are studied actively today. However, ABE has the attribute revocation problem. In this paper, we propose a new revocation scheme using update information, i.e., revocation patch (not update key), in which an encryptor does not need to care about the revocation list. We propose an FE scheme with multiple authorities and no central authority supporting revocation by using revocation patch. Our proposal realizes the revocation on the attribute level. More precisely, we introduce the new concept, i.e., the revocation on the category level that is a generalization of attribute level. We prove that our construction is adaptively secure against chosen plaintext attacks and static corruption of authorities based on the decisional linear (DLIN) assumption.


Functional encryption Access control Multiple authorities Revocation Attribute-level 



This work was supported in part by JSPS KAKENHI Grant Number 26330151 and JSPS and DST under the Japan - India Science Cooperative Program. The authors would like to thank anonymous reviewers for their useful comments.


  1. 1.
    Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03298-1_16 CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–300. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10868-6_17 CrossRefGoogle Scholar
  3. 3.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334 (2007)Google Scholar
  4. 4.
    Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: ACM CCS 2008, pp. 417–426 (2008)Google Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  6. 6.
    Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_28 CrossRefGoogle Scholar
  7. 7.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Adaptively secure unrestricted attribute-based encryption with subset difference revocation in bilinear groups of prime order. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 325–345. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31517-1_17 CrossRefGoogle Scholar
  8. 8.
    González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 350–363. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31448-3_26 CrossRefGoogle Scholar
  9. 9.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)Google Scholar
  10. 10.
    Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46078-8_47 Google Scholar
  11. 11.
    Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption: time constrained access control with hidden attributes and better efficiency. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 235–254. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42033-7_13 CrossRefGoogle Scholar
  12. 12.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_31 CrossRefGoogle Scholar
  13. 13.
    Lewko, A.B.: Functional encryption: new proof techniques and advancing capabilities. Ph.D. thesis, The University of Texas (2012)Google Scholar
  14. 14.
    Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00730-9_2 CrossRefGoogle Scholar
  15. 15.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_3 CrossRefGoogle Scholar
  16. 16.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_11 CrossRefGoogle Scholar
  17. 17.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_22 CrossRefGoogle Scholar
  18. 18.
    Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36362-7_9 CrossRefGoogle Scholar
  19. 19.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: ACM CCS 2007, pp. 195–203 (2007)Google Scholar
  20. 20.
    Qian, J., Dong, X.: Fully secure revocable attribute-based encryption. J. Shanghai Jiaotong Univ. (Sci.) 16(4), 490–496 (2011)CrossRefzbMATHGoogle Scholar
  21. 21.
    Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_13 CrossRefGoogle Scholar
  22. 22.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  23. 23.
    The full version of this paper. It will appear in the IACR Cryptology ePrint Archive.

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hikaru Tsuchida
    • 1
    Email author
  • Takashi Nishide
    • 2
  • Eiji Okamoto
    • 2
  • Kwangjo Kim
    • 3
  1. 1.NEC CorporationKawasakiJapan
  2. 2.Faculty of Engineering, Information and SystemsUniversity of TsukubaTsukubaJapan
  3. 3.Computer Science DepartmentKAISTDaejeonKorea

Personalised recommendations