New Developments in Sugarcane Genetics and Genomics

  • Melina Cristina Mancini
  • Cláudio Benício Cardoso-Silva
  • Estela Araujo Costa
  • Thiago Gibbin Marconi
  • Antonio Augusto Franco Garcia
  • Anete Pereira De SouzaEmail author


Modern sugarcane cultivars (Saccharum spp.) are derived from an interspecific hybridization between Saccharum officinarum and Saccharum spontaneum and pose a significant challenge for both genotyping and data analysis. Due to their large (estimated at approximately 10 Gb) and complex genome, which can include variable ploidy levels and aneuploidy, studies involving molecular markers for genetic and quantitative trait locus (QTL) mapping are extremely laborious. Several advances in the genetics and genomics of sugarcane have recently become possible with the emergence of new sequencing technologies, the use of several types of marker systems, and the use of genotyping data analysis software. Molecular markers and comparative genomics are powerful resources that allow us to explore allelic variation and to thus understand the genome organization of sugarcane. This chapter provides an overview of what is known about the genetic structure and the genomics of sugarcane as well as the main genomics strategies developed for sugarcane. Among the strategies discussed are the use of single-nucleotide polymorphisms (SNPs) and bacterial artificial chromosome (BAC) libraries and the analysis of the syntenic relationships with related species (maize, sorghum, and rice).


Bacterial artificial chromosome Genetic mapping Molecular markers Transcriptome 



This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant 145478/2012-2) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, Grant 2005/55258-6, 2008/52197-4, 2010/50031-1, 2010/06715-3, 2010/50549-0). It was also part of the research of the Instituto Nacional de Ciência e Tecnologia do Bioetanol (granted by CNPq, 574002/2008-1, and FAPESP, 2008/57908-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Computacional Biology Program) and the CeProBio Project (granted by CNPq). A.A.F. Garcia and A.P. Souza are recipients of research fellowships from CNPq.


  1. Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19(4):341–356CrossRefGoogle Scholar
  2. Aitken KS, Jackson PA, Mcintyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110(5):789–801PubMedCrossRefGoogle Scholar
  3. Aitken KS, Jackson PA, Mcintyre CL (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar x Saccharum officinarum population. Theor Appl Genet 112(7):1306–1317PubMedCrossRefGoogle Scholar
  4. Aitken KS, Jackson PA, Mcintyre CL (2007) Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50(8):742–756PubMedCrossRefGoogle Scholar
  5. Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117(7):1191–1203PubMedCrossRefGoogle Scholar
  6. Al-Janabi SM, Honeycutt RJ, McClelland M, Sobral BW (1993) A genetic Linkage Map of Saccharum spontaneum L. “SES 208”. Genetics 134(4):1249–1260PubMedPubMedCentralGoogle Scholar
  7. Al-Janabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K, Autrey LJC, Dookun-Saumtally A (2007) Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed 19(1):1–14Google Scholar
  8. Barreneche T, Bodenes C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K, Favre JM, Glössl J, Kremer A (1998) A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor Appl Genet 97(7):1090–1103CrossRefGoogle Scholar
  9. Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132(1):84–91PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552PubMedCrossRefGoogle Scholar
  11. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  12. Bower NI, Casu RE, Maclean DJ, Reverter A, Chapman SC, Manners JM (2005) Transcriptional response of sugarcane roots to methyl jasmonate. Plant Sci 168:761–772CrossRefGoogle Scholar
  13. Bundock PC, Henry RJ (2004) Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet 109(3):543–551PubMedCrossRefGoogle Scholar
  14. Cardoso-Silva CB (2015) Análise do transcriptoma e de sequências genômicas de variedades comerciais de cana-de-açúcar. Campinas: UNICAMP. Thesis (Doutorado em Genética e Biologia Molecular), Instituto de Biologia, Universidade Estadual de CampinasGoogle Scholar
  15. Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TWA, Canesin LEC, Pinto LR, Carneiro MS, Garcia AAF, Souza AP, Vicentini R (2014) De Novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One 9(2):e88462. doi: 10.1371/journal.pone.0088462 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carlier JD, Reis A, Duval MF, Coppens D’Eeckenbrugge G, Leitão JM (2004) Genetic maps of RAPD, AFLP and ISSR markers in Ananas bracteatus and A. comosus using the pseudo-testcross strategy. Plant Breed 123(2):186–192CrossRefGoogle Scholar
  17. Carson DL, Botha FC (2000) Preliminary analysis of expressed sequence tags for sugarcane. Crop Sci 40:1769–1779CrossRefGoogle Scholar
  18. Carson D, Botha F (2002) Genes expressed in sugarcane maturing intermodal tissue. Plant Cell Rep 20:1075–1081CrossRefGoogle Scholar
  19. Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386PubMedCrossRefGoogle Scholar
  20. Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517PubMedCrossRefGoogle Scholar
  21. Chepelev I, Wei G, Tang Q, Zhao K (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res 37:e106PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23(2):203–207PubMedCrossRefGoogle Scholar
  23. Cirulli ET, Singh A, Shianna KV, Ge D, Smith JP, Maia JM, Heinzen EL, Goedert JJ, Goldstein DB (2010) Screening the human exome: a comparison of whole genome and whole transcriptome sequencing. Genome Biol 11:R57PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cloonan N, Forrest A, Kolle G, Gardiner B, Faulkner G, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AG, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619PubMedCrossRefGoogle Scholar
  25. D’Hont A, Lu YH, León DG, Grivet L, Feldmann P, Lanaud C, Glaszmann JC (1994) A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe. Genome 37(2):222–230PubMedCrossRefGoogle Scholar
  26. D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225CrossRefGoogle Scholar
  27. Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol 28(2):294–298CrossRefGoogle Scholar
  28. Daugrois J, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar “R570”. Theor Appl Genet 92(8):1059–1064PubMedCrossRefGoogle Scholar
  29. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mithcell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Da Silva JAG, Ulian EC, Figueira AVO, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314PubMedCrossRefGoogle Scholar
  31. Garcia AAF, Mollinari M, Marconi TG, Serang OR, Silva RR, Vieira MLC, Vicentini R, Costa EA, Mancini MC, MO G, Pastina MM, Gazaffi R, Martins ERF, Dahmer N, Sforça DA, Cardoso-Silva CB, Bundock P, Henry RJ, Souza GM, Van Sluys MA, Landell MGA, Carneiro MS, Vincentz MAG, Pinto LR, Vencovsky R, Souza AP (2013) SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Sci Rep 3:3399PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gazaffi R, Margarido GRA, Pastina MM, Mollinari M, Garcia AAF (2014) A model for quantitative trait loci mapping, linkage phase, and segregation pattern estimation for a full-sib progeny. Tree Genet Genomes 10:791–801CrossRefGoogle Scholar
  33. George AW and Aitken K (2010) A new approach for copy number estimation in polyploids. Jounal of Heredity 101:521–524Google Scholar
  34. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of eucalyptusgrandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137(4):1121–1137PubMedPubMedCentralGoogle Scholar
  35. Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127CrossRefGoogle Scholar
  36. Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP Mapping in Cultivated Sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000PubMedPubMedCentralGoogle Scholar
  37. Guimarães CT (1999) Mapeamento comparativo e detecção de QTLs em cana-de-açúcar utilizando marcadores moleculares. [s.l.] UFV, Viçosa, MGGoogle Scholar
  38. Guimarães CT, Sills GR, Sobral BW (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci U S A 94(26):14261–14266PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gut IG (2004) DNA analysis by MALDI-TOF mass spectrometry. Hum Mutat 23(5):437–441PubMedCrossRefGoogle Scholar
  40. Hansey CN, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Buell CR (2012) Maize (Zea mays L.) genome diversity as revealed by RNA-sequencing. PLoS One 7: e33071Google Scholar
  41. Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann GC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharumspp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97CrossRefGoogle Scholar
  42. Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037PubMedCrossRefGoogle Scholar
  43. Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA (2014) Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One 9(7):e102448PubMedPubMedCentralCrossRefGoogle Scholar
  44. Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194CrossRefGoogle Scholar
  45. Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL (2004) Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome 47:988–993PubMedCrossRefGoogle Scholar
  46. Kanazin V, Talbert H, See D, De Camp P, Nevo E, Blake T (2002) Discovery and assay of single-nucleotide polymorphisms in barley (Hordeumvulgare). Plant Mol Biol 48:529–537PubMedCrossRefGoogle Scholar
  47. Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, Souza Junior CL, AP S (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38PubMedCrossRefGoogle Scholar
  49. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ma H-M, Schulze S, Lee S, Yang M, Mirkov E, Irvine J, Moore P, Paterson A (2004) An EST survey of the sugarcane transcriptome. Theor Appl Genet 108:851–863PubMedCrossRefGoogle Scholar
  52. Mantello CC, Cardoso-Silva CB, da Silva CC, de Souza LM, Scaloppi Junior EJ, de Souza GP, Vicentini R, Souza AP (2014) De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS One 9(7):e102665. doi: 10.1371/journal.pone.0102665 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Marconi TG, Costa EA, Miranda HRCAN, Mancini MC, Cardoso-Silva CB, Oliveira KM, Pinto LR, Molinari M, Garcia AAF, Souza AP (2011) Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Res Notes 4:264PubMedPubMedCentralCrossRefGoogle Scholar
  54. Margarido GRA, Souza AP, Garcia AAF (2007) OneMap: software for genetic mapping in outcrossing species. Hereditas 144:78–79PubMedCrossRefGoogle Scholar
  55. Margarido GRA, Pastina MM, Souza AP, Garcia AAF (2015) Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Mol Breed 35:175PubMedPubMedCentralCrossRefGoogle Scholar
  56. McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM (2005a) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400PubMedCrossRefGoogle Scholar
  57. McIntyre CL, Whan VA, Croft B, Magarey R, Smith GR (2005b) Identification and validation of molecular markers associated with Pachymetra root rot and brown rust resistance in sugarcane using map- and association-based approaches. Mol Breed 16:151–161CrossRefGoogle Scholar
  58. McIntyre CL, Jackson M, Cordeiro GM, Amouyal O, Hermann S, Aitken KS, Eliott F, Henry RJ, Casu RE, Bonnett GD (2006) The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed 18:39–50CrossRefGoogle Scholar
  59. Metzgar D, Jeffrey B, Wills C (2000) selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80PubMedPubMedCentralGoogle Scholar
  60. Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682PubMedPubMedCentralGoogle Scholar
  61. Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL Analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ming R, Liu SC, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002a) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583CrossRefGoogle Scholar
  63. Ming R, Wang W, Draye X, Moore H, Irvine E, Paterson H (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345PubMedCrossRefGoogle Scholar
  64. Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH (2002c) Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome 45:794–803Google Scholar
  65. Mogg R, Batley J, Hanley S, Edwards D, O’Sullivan H, Edwards J (2002) Characterization of the flanking regions of Zea mays microsatellites reveals a large number of useful sequence polymorphisms. Theor Appl Genet 105:532–543PubMedCrossRefGoogle Scholar
  66. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially present with non-repetitive DNA in plant genomes. Nat Genet 30:194–200PubMedCrossRefGoogle Scholar
  67. Morin R, O’Connor M, Griffith M, Kuchenbauer F, Delaney A et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621PubMedPubMedCentralCrossRefGoogle Scholar
  68. Morozova O, Marra M (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264PubMedCrossRefGoogle Scholar
  69. Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366CrossRefGoogle Scholar
  70. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphisms (SNPS) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171PubMedCrossRefGoogle Scholar
  71. Oberacher H (2008) On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 391:135–149PubMedCrossRefGoogle Scholar
  72. Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AM, Ulian EC, Garcia AAF, Souza AP (2007) Functional genetic linkage map on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208CrossRefGoogle Scholar
  73. Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist AAF, Garcia AAF, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209PubMedCrossRefGoogle Scholar
  74. Palhares AC, Rodrigues-Morais TB, Van-Sluys MA, Domingues DS, Maccheroni W, Jordão H, Souza AP, Marconi TG, Mollinari M, Gazaffi R, Garcia AAF, Vieira MLV (2012) A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genet 13:51PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM, Pinto LR, Souza AP, van Eeuwijk FA, Garcia AAF (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Genet 124:835–849PubMedCrossRefGoogle Scholar
  76. Pinto LR, Oliveira KM, Ulian EC, Garcia AAF, Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804PubMedCrossRefGoogle Scholar
  77. Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, Souza AP (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomics SSRs. Plant Breed 125:378–384CrossRefGoogle Scholar
  78. Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Bidoia MAP, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172:313–327CrossRefGoogle Scholar
  79. Piperidis N, Jackson PA, D’Hont A, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21:233–247CrossRefGoogle Scholar
  80. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manese Y, Dreisigackere S, Crossae J, Sánchez-Villedae H, Sorrellsd M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Gen 5:103–113CrossRefGoogle Scholar
  81. Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poapratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280PubMedCrossRefGoogle Scholar
  82. Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A (2006) Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391PubMedCrossRefGoogle Scholar
  83. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  84. Rafalski A, Tingey S (2008) SNPs and their use in maize. In: Plant genotyping II: SNP [s.l.]. CAB International. pp 30–43Google Scholar
  85. Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381CrossRefGoogle Scholar
  86. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98:11479–11484PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527PubMedCrossRefGoogle Scholar
  88. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381PubMedPubMedCentralCrossRefGoogle Scholar
  89. Santos FRC, Pinto LR, Carlini-Garcia LA, Gazaffi R, Mancini MC, Gonçalves BS, Medeiros CNF, Perecin D, Garcia AAF, Souza AP, Zucchi MI (2014) Marker-trait association and epistasis for Brown rust resistance in sugarcane. Euphytica 203:533–547CrossRefGoogle Scholar
  90. Serang O, Mollinari M, Garcia AAF (2012) Efficient exact maximum a posteriori computation for Bayesian SNP genotyping in polyploids. PLoS One 7(2):e30906. doi: 10.1371/journal.pone.0030906 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GMQ, Del-Bem LE, Vicentini R, Nogueira FTS, Campos RA, Nunes SL, Turrini PCG, Vieira AP, Cruz EAO, Correa TCS, Hotta CT, Varani AAM, Vautrin S, Trindade AS, Vilela MM, Lembke CG, Sato PM, Andrade RF, Nishiyama-Jr MY, Cardoso-Silva CB, Scortecci KC, Garcia AAF, Carneiro MS, Kim C, Paterson AH, Bergès H, D’Hont A, Souza AP, Souza GM, Vincentz M, Kitajima JP, Van-Sluys M (2014) Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics 15(540):1–17Google Scholar
  92. Sequenom (2007) Typer 4.0 Manual. Sequenom, San Diego, p. 179Google Scholar
  93. Shepherd M, Cross M,·Dieters MJ, Henry R (2003) Genetic maps for Pinuselliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers. Theor Appl Genet 106:1409–1419PubMedCrossRefGoogle Scholar
  94. Sills GR, Bridges W, Al-Janabi SM, Sobral BWS (1995) Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor (S. robustum Brandes & Jesw. ex Grassl). Mol Breed 1:355–363CrossRefGoogle Scholar
  95. Silva JA, Sorrells ME, Burnquist WL, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791PubMedCrossRefGoogle Scholar
  96. Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995) Saccharum spontaneum L. “SES 208” genetic linkage map combining RFLP and PCR-based markers. Mol Breed 1:165–179CrossRefGoogle Scholar
  97. Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: An insight into marker development in brachypodium. PLoS One 6(6):e21298PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tautz D (1989) Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res 17:6463–6471PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A 98:9161–9166PubMedPubMedCentralCrossRefGoogle Scholar
  100. Toledo-Silva G, Cardoso-Silva CB, Jank L, Souza AP (2013) De novo transcriptome assembly for the tropical grass Panicum maximum Jacq. PLoS One 8(7):e70781. doi: 10.1371/journal.pone.0070781 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10:967–981PubMedPubMedCentralCrossRefGoogle Scholar
  102. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7:334–346PubMedCrossRefGoogle Scholar
  103. Van Belleghem SM, Roelofs D, Van Houdt J, Hendrickx F (2012) De novo TranscriptomeAssemb and SNP discovery in the wing polymorphic salt marsh beetle Pogonuschalceus (Coleoptera, Carabidae). PLoS One 7(8):e42605. doi: 10.1371/journal.pone.0042605 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Vettore AL, Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7CrossRefGoogle Scholar
  105. Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, Henrique-Silva F, Giglioti EA, MV L, LL C, Nobrega MP, Carrer H, França SC, BacciJúnior M, Goldman MH, Gomes SL, Nunes LR, Camargo LE, Siqueira WJ, Van Sluys MA, Thiemann OH, Kuramae EE, Santelli RV, Marino CL, Targon ML, Ferro JA, Silveira HC, Marini DC, Lemos EG, Monteiro-Vitorello CB, Tambor JH, Carraro DM, Roberto PG, Martins VG, Goldman GH, de Oliveira RC, Truffi D, Colombo CA, Rossi M, de Araujo PG, Sculaccio SA, Angella A, Lima MM, de Rosa Júnior VE, Siviero F, Coscrato VE, Machado MA, Grivet L, Di Mauro SM, Nobrega FG, Menck CF, Braga MD, Telles GP, Cara FA, Pedrosa G, Meidanis J, Arruda P (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vos P, Hogers R, Bleeker M, Reijans M, Lee TV, Hornes M, Frijters A, Pot J, Peleman J, Kulper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164PubMedCrossRefGoogle Scholar
  108. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wu RL, Han YF, Hu JJ, Fang JJ, Li L, Li ML, Zeng ZB (2000) An integrated genetic map of Populusdeltoides based on amplified fragment length polymorphisms. Theor Appl Genet 100:1249–1256CrossRefGoogle Scholar
  111. Wu R, Ma CX, Painter I, Zeng ZB (2002) Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol 61:349–363Google Scholar
  112. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  113. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Melina Cristina Mancini
    • 1
  • Cláudio Benício Cardoso-Silva
    • 1
  • Estela Araujo Costa
    • 1
  • Thiago Gibbin Marconi
    • 1
  • Antonio Augusto Franco Garcia
    • 2
  • Anete Pereira De Souza
    • 1
    • 3
    Email author
  1. 1.Centro de Biologia Molecular e Engenharia Genetica (CBMEG)Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  2. 2.Departamento de Genetica, Escola Superior de Agricultura Luiz de QueirozUniversidade de São PauloPiracicabaBrazil
  3. 3.Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations