Constant-Size Ciphertext Attribute-Based Encryption from Multi-channel Broadcast Encryption

  • Sébastien CanardEmail author
  • Viet Cuong Trinh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10063)


Attribute-based encryption (\({\mathsf {ABE}}\)) is an extension of traditional public key encryption in which the encryption and decryption phases are based on user’s attributes. More precisely, we focus on ciphertext-policy \({\mathsf {ABE}}\) (\({\mathsf {CP}}\)-\({\mathsf {ABE}}\)) where the secret-key is associated to a set of attributes and the ciphertext is generated with an access policy. It then becomes feasible to decrypt a ciphertext only if one’s attributes satisfy the used access policy. \({\mathsf {CP}}\)-\({\mathsf {ABE}}\) scheme with constant-size ciphertext supporting fine-grained access control has been investigated at AsiaCrypt’15 and then at TCC’16. The former makes use of the conversion technique between \({\mathsf {ABE}}\) and spatial encryption, and the later studies the pair encodings framework.

In this paper, we give a new approach to construct such kind of \({\mathsf {CP}}\)-\({\mathsf {ABE}}\) scheme. More precisely, we propose private \({\mathsf {CP}}\)-\({\mathsf {ABE}}\) schemes with constant-size ciphertext, supporting CNF (Conjunctive Normal Form) access policy, with the simple restriction that each attribute can only appear \(k_{max}\) times in the access formula. Our two constructions are based on the \({\mathsf {BGW}}\) scheme at Crypto’05. The first scheme is basic selective secure (in the standard model) while our second one reaches the selective \({\mathsf {CCA}}\) security (in the random oracle model).


Attribute-based encryption Ciphertext-policy CNF 



This work is supported by the European Union SUPERCLOUD Project (H2020 Research and Innovation Program grant 643964 and Swiss Secretariat for Education, Research and Innovation contract 15.0091). It was partially conducted within the context of the Vietnamese Project Pervasive and Secure Information Service Infrastructure for Internet of Things based on Cloud Computing.


  1. 1.
    Abe, M., Groth, J., Ohkubo, M., Tango, T.: Converting cryptographic schemes from symmetric to asymmetric bilinear groups. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 241–260. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_14 CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 259–288. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_10 CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_31 CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_24 CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Libert, B., Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19379-8_6 CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi: 10.1007/11426639_26 CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). doi: 10.1007/11535218_16 CrossRefGoogle Scholar
  8. 8.
    Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 50–67. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36095-4_4 CrossRefGoogle Scholar
  9. 9.
    Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24316-5_8 CrossRefGoogle Scholar
  10. 10.
    Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_20 Google Scholar
  11. 11.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehle, D.: Cryptanalysis of the multilinear map over the integers. Cryptology ePrint Archive, Report 2014/906 (2014).
  12. 12.
    Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00843-6_2 CrossRefGoogle Scholar
  13. 13.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_27 CrossRefGoogle Scholar
  14. 14.
    Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31448-3_25 CrossRefGoogle Scholar
  15. 15.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 2006: 13th Conference on Computer and Communications Security, pp. 89–98, Alexandria, Virginia, USA, 30 Oct - 3 Nov 2006. ACM Press (2011). Available as Cryptology ePrint Archive Report 2006/309Google Scholar
  16. 16.
    Hamburg, M.: Spatial encryption. Cryptology ePrint Archive: Report 2011/389 (2011)Google Scholar
  17. 17.
    Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13013-7_2 CrossRefGoogle Scholar
  18. 18.
    Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive: Report 2015/301 (2014).
  19. 19.
    Junod, P., Karlov, A.: An efficient public-key attribute-based broadcast encryption scheme allowing arbitrary access policies. In: ACM Workshop on Digital Rights Management, pp. 13–24. ACM Press (2010)Google Scholar
  20. 20.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  21. 21.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_30 CrossRefGoogle Scholar
  22. 22.
    Lubicz, D., Sirvent, T.: Attribute-based broadcast encryption scheme made efficient. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 325–342. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68164-9_22 CrossRefGoogle Scholar
  23. 23.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Crypto 2016 (2016, to appear). Google Scholar
  24. 24.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_22 CrossRefGoogle Scholar
  25. 25.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) 14th Conference on Computer and Communications Security, ACM CCS 2007, pp. 195–203, Alexandria, Virginia, USA, 28–31 October 2007. ACM Press (2011)Google Scholar
  26. 26.
    Phan, D.H., Pointcheval, D., Trinh, V.C.: Multi-channel broadcast encryption. In: Proceedings of the 8th ACM Symposium on InformAtion, Computer and Communications Security (ASIACCS 2013). ACM Press (2013)Google Scholar
  27. 27.
    Rouselakis, Y., Waters, B.: Practical constructions, new proof methods for large universe attribute-based encryption. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) 20th Conference on Computer and Communications Security, ACM CCS 2013, pp. 463–474, Berlin, Germany, 4–8 November 2013. ACM Press (2011)Google Scholar
  28. 28.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi: 10.1007/11426639_27 CrossRefGoogle Scholar
  29. 29.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19379-8_4 CrossRefGoogle Scholar
  30. 30.
    Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_26 CrossRefGoogle Scholar
  31. 31.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and compact constructions for non-monotonic attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_16 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Orange Labs - Applied Crypto GroupCaenFrance
  2. 2.Hong Duc UniversityThanh HoaViet Nam

Personalised recommendations