Exploring the Role of Secondary Metabolites of Trichoderma in Tripartite Interaction with Plant and Pathogens

  • Chetan Keswani
  • Kartikay Bisen
  • Manoj Kumar Chitara
  • Birinchi Kumar Sarma
  • Harikesh Bahadur SinghEmail author


Exploitation of agriculturally important microorganisms in plant growth promotion and antagonistic potential is a well-investigated area. Trichoderma spp. are widely acknowledged for their potential to parasitize plant pathogenic fungi and have been efficiently utilized for biocontrol of wide range of seed and soil-borne phytopathogens. The antagonistic activity of Trichoderma spp. is largely credited to production of various antimicrobial secondary metabolites and has also been reported for plant growth promotion, management of the phytopathogens, and induction of systemic resistance in plants. Secondary metabolites-based formulation may have an additional benefit of longer shelf-life and immediate effect in comparison to spore-based formulations. Hence, this chapter will focus on the role of biosynthesized antimicrobial secondary metabolites of Trichoderma in tripartite interactions.


Biocontrol Agriculturally important microorganisms Secondary metabolites Bioformulation Systemic resistance 


  1. Alberts AW (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethyl glutaryl-coenzyme A reductase and a cholesterol lowering agent. Proc Natl Acad Sci U S A 77:3957–3961CrossRefGoogle Scholar
  2. Almassi F, Ghisalberti EL, Narbey MJ (1991) New antibiotics from strains of Trichoderma harzianum. J Nat Prod 54:396–402CrossRefGoogle Scholar
  3. Astudillo L, Schmeda-Hirschmann G, Soto R (2000) Acetophenone derivatives from Chilean isolated of Trichoderma pseudokoningii Rifai. World J Microbiol Biotechnol 16:585–587CrossRefGoogle Scholar
  4. Benitez T, Rincon AM (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260Google Scholar
  5. Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, HB S, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206Google Scholar
  6. Blight MM, Grove JF (1986) Viridin. Structures of the analogs virone and wortmannolone. J Chem Soc Perkin Trans 1:1317–1322CrossRefGoogle Scholar
  7. Brenner ML (1981) Modern methods for plant growth substance analysis. Annu Rev Plant Physiol 32:511–538CrossRefGoogle Scholar
  8. Brian PW (1944) Production of gliotoxin by Trichoderma viride. Nature 154:667–668CrossRefGoogle Scholar
  9. Brian PW, Hemming HG (1945) Gliotoxin, a fungistatic metabolic product of Trichoderma viride. Ann Appl Biol 32:214–220CrossRefGoogle Scholar
  10. Brian PW, McGowan JC (1945) Viridin a highly fungistatic substance produced by Trichoderma viride. Nature 156:144–145CrossRefGoogle Scholar
  11. Brueckner H, Graf H, Bokel M (1984) Paracels in, characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Experientia 40:1189–1197CrossRefGoogle Scholar
  12. Chen F, D’Auria JC, Tholl D (2003) An Arabidopsis thaliana gene for methyl salicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588CrossRefGoogle Scholar
  13. Chiang Y, Lee K, Sanchez JF (2009) Unlocking fungal cryptic natural products. Nat Prod Commun 4:1505–1510Google Scholar
  14. Claydon N, Hanson JR, Truneh A (1999) Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30:3802–3803CrossRefGoogle Scholar
  15. Cleland R (1972) The dosage–response curve for auxin-induced cell elongation: a re-evaluation. Planta 104:1–9CrossRefGoogle Scholar
  16. Coats JH, Meyer CE, Pyke TR (1971) Antibiotic dermadin. US Patent 3627882, 14 Dec 1971Google Scholar
  17. Contreras-Cornejo HA, Macìas-Rodrìguez L, Cortés-Penagos C (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592CrossRefGoogle Scholar
  18. Cutler HG, Himmelsbach DS, Arrendale RF (1989) Koninginin A: a novel plant growth regulator from Trichoderma koningii. Agric Biol Chem 53:2605–2611Google Scholar
  19. Cutler HG, Jacyno JM (1991) Biological activity of (−) harzianopyridone isolated from Trichoderma harzianum. Agric Biol Chem 55:2629–2631Google Scholar
  20. Cutler HG, Himmelsbach DS, Yagen B (1991a) Koninginin B: a biologically active congener of koninginin A from Trichoderma koningii. J Agric Food Chem 39:977–980CrossRefGoogle Scholar
  21. Cutler HG, Jacyno JM, Phillips RS (1991b) Cyclonerodiol from a novel source, Trichoderma koningii: plant growth regulatory activity. Agric Biol Chem Tokyo 55:243–244Google Scholar
  22. Degenkolb T, Gräfenhan T, Nirenberg HI (2006) Trichoderma brevicompactum Complex: rich source of novel and recurrent plant-protective polypeptide antibiotics. J Agric Food Chem 54:7047–7061CrossRefGoogle Scholar
  23. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39Google Scholar
  24. Dickinson JM, Hanson JR, Hitchcock PB (1989) Structure and biosynthesis of harzianopyridone, an antifungal metabolite of Trichoderma harzianum. J Chem Soc Perkin Trans 1:1885CrossRefGoogle Scholar
  25. Dunlop RW, Simon A, Sivasithamparam K (1989) An antibiotic from Trichoderma koningii active against soilborne plant pathogens. J Nat Prod 52:67–74CrossRefGoogle Scholar
  26. El-Hasan A, Buchenauer H (2009) Actions of 6-pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defense responses in maize. J Phytopathol 157:697–707CrossRefGoogle Scholar
  27. Endo A, Monacolin K (1979) A new hypocholesterolemic agent produced by a Monascus species. J Antibiot 32:852–854CrossRefGoogle Scholar
  28. Endo A, Kuroda M, Tsujita Y (1976) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot 29:1346–1348CrossRefGoogle Scholar
  29. Endo A, Hasumi K, Sakai K (1985) Specific inhibition of glyceraldehyde-3-phosphate dehydrogenase by koningic acid (heptelidic acid). J Antibiot 38:920–925CrossRefGoogle Scholar
  30. Engelberth J, Koch T, Schuler G (2000) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377CrossRefGoogle Scholar
  31. Evidente A, Cabras A, Maddau L (2003) Viride Pyronone, a new antifungal 6 substituted 2H-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960CrossRefGoogle Scholar
  32. Favilla M, Macchia L, Gallo A (2006) Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food Chem Toxicol 44:1922–1931CrossRefGoogle Scholar
  33. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236Google Scholar
  34. Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91CrossRefGoogle Scholar
  35. Fujita T, Wada S, Iida A (1994) Fungal metabolites. XIII. Isolation and structural elucidation of new peptaibols, trichodecenins I and II from Trichoderma viride. Chem Pharm Bull 42:489–494CrossRefGoogle Scholar
  36. Fujiwara A, Okuda T, Masuda S (1982) Isonitrile antibiotics, a new class of antibiotics with an isonitrile group. I. Fermentation, isolation and characterization of isonitrile antibiotics. Agric Biol Chem 46:1803–1809Google Scholar
  37. Garo E, Starks CM, Jensen PR (2003) Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichodermavirens. J Nat Prod 66:423–426CrossRefGoogle Scholar
  38. Ghisalberti EL (2002) Anti-infective agents produced by the hyphomycetes general Trichoderma and Gliocladium. Curr Med Chem 1:343–374Google Scholar
  39. Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799–1804CrossRefGoogle Scholar
  40. Ghisalberti EL, Hockless DCR, Rowland C (1992) Harziandione, a new class of diterpene from Trichoderma harzianum. J Nat Prod 55:1690–1694CrossRefGoogle Scholar
  41. Golder WS, Watson TR (1980) Lanosterol derivatives as precursors in the biosynthesis of viridin. J Chem Soc Perkin Trans 1:422–425CrossRefGoogle Scholar
  42. Hanson JR (2003) Natural products: the secondary metabolites, vol 17. Royal Society of Chemistry, Cambridge, p 147Google Scholar
  43. Hanson JR (2008) The chemistry of fungi. Royal Society of Chemistry, Cambridge, p 204Google Scholar
  44. Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393CrossRefGoogle Scholar
  45. Harman GE, Howell CR, Viterbo A (2004) Trichoderma species opportunistic, a virulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  46. Harris GH, Jones ETT, Meinz MS (1993) Isolation and structure elucidation of viridio fungins A, B and C. Tetrahedron Lett 34:5235–5238CrossRefGoogle Scholar
  47. Heraux FMG, Hallett SG, Ragothama KG (2005) Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. HortScience 40:1394–1397Google Scholar
  48. Howell CR (1998) The role of antibiosis in biocontrol. In: GE H, CP K (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis, London, pp 139–191Google Scholar
  49. Howell CR (1999) Selective isolation from soil and separation in vitro of P and Q strains of Trichoderma virens with differential media. Mycologia 91:930–934CrossRefGoogle Scholar
  50. Huang Q, Tezuka Y, Hatanaka Y (1995a) Studies on metabolites of mycoparasitic fungi: III. New sesquiterpene alcohol from Trichoderma koningii. Chem Pharm Bull 43:1035–1038CrossRefGoogle Scholar
  51. Huang Q, Tezuka Y, Kikuchi T (1995b) Studies on metabolites of mycoparasitic fungi: II. Metabolites of Trichoderma koningii. Chem Pharm Bull 43:223–239CrossRefGoogle Scholar
  52. Itoh Y, Takahashi S, Haneishi T (1980) Structure of heptilidic acid, a new sesquiterpene antibiotic from fungi. J Antibiot 33:525–526CrossRefGoogle Scholar
  53. Javaid A, Ali S (2011) Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat Prod Res 25:730–740CrossRefGoogle Scholar
  54. Jaworski A, Kirschbaum J, Bruckner H (1999) Structures of trichovirins II, peptaibol antibiotics from the mold Trichoderma viride NRRL 5243. J Pept Sci 5:341–351CrossRefGoogle Scholar
  55. Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism-from biochemistry to genomics. Nat Rev Microbiol 3:937–947CrossRefGoogle Scholar
  56. Keswani C (2015a) Ecofriendly management of plant diseases by biosynthesized secondary metabolites of Trichoderma spp. J Brief Ideas. 10.5281/zenodo.15571Google Scholar
  57. Keswani C (2015b) Proteomics studies of thermotolerant strain of Trichoderma spp. Ph.D. Thesis, Banaras Hindu University, VaranasiGoogle Scholar
  58. Keswani C, Singh SP, Singh HB (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3:27–30CrossRefGoogle Scholar
  59. Keswani C, Mishra S, Sarma BK (2014) Unraveling the efficient application of secondary metabolites of various Trichoderma. Appl Microbiol Biotechnol 98:533–544CrossRefGoogle Scholar
  60. Krause C, Kirschbaum J, Jung G (2006) Sequence diversity of the peptaibol antibiotic suzukacillin-A from the mold Trichoderma viride. J Pept Sci 12:321–327CrossRefGoogle Scholar
  61. Kubicek CP, Estrella AH, Seiboth VS (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40CrossRefGoogle Scholar
  62. Lee CH, Chung MC, Lee HJ (1997) MR566A and MR566B, new melanin synthesis inhibitors produced by Trichoderma harzianum. Taxonomy, fermentation, isolation and biological activities. J Antibiot 50:469–473CrossRefGoogle Scholar
  63. Luo Y, Zhang D, Dong XW (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 13:120–126CrossRefGoogle Scholar
  64. Macias FA, Varela RM, Simonet AM (2000) Bioactive carotanes from Trichoderma virens. J Nat Prod 63:1197–1200CrossRefGoogle Scholar
  65. Malmierca MG, McCormick SP, Cardoza RE (2015) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant Microbe Interact 28(11):1181–1197Google Scholar
  66. Marfori EC, Kajiyama S, Fukusaki E (2002) Trichosetin, anovel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseuscallus. Z Naturforsch C J Biosci 57:465–470Google Scholar
  67. Meyer CE (1966) U-21,963, a new antibiotic. II. Isolation and characterization. Appl Microbiol 14:511–512Google Scholar
  68. Mishra S, Singh A, Keswani C (2015) Harnessing plant-microbe interaction for enhanced protection against phytopathogens. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 111–125Google Scholar
  69. Mukherjee PK, Buensanteai N, Moran-Diez ME (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165CrossRefGoogle Scholar
  70. Mukhopadhyay T, Roy K, Sawant SN (1996) On an unstable antifungal metabolite from Trichoderma koningii isolation and structure elucidation of a new cyclopentenone derivative (3-dimethylamino-5-hydroxy-5vinyl-2-cyclopenten-1-one). J Antibiot 49:210–211CrossRefGoogle Scholar
  71. Nakano H, Hara M, Mejiro T (1990) DC1149B, DC1149R and their manufacture with Trichoderma. JP Patent 02218686Google Scholar
  72. Nobuhara M, Tazima H, Shudo K (1976) A fungal metabolite, novel isocyanoepoxide. Chem Pharm Bull 24:832–834CrossRefGoogle Scholar
  73. Oh SU, Lee SJ, Kim JH (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64CrossRefGoogle Scholar
  74. Ordentlich A, Wiesman Z, Gottlieb HE (1992) Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31:485–486CrossRefGoogle Scholar
  75. Parker SR, Cutler HG, Schreiner PR (1995a) Koninginin C: a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1126–1127CrossRefGoogle Scholar
  76. Parker SR, Cutler HG, Schreiner PR (1995b) Koninginin E: isolation of a biologically active natural product from Trichoderma koningii. Biosci Biotechnol Biochem 59:1747–1749CrossRefGoogle Scholar
  77. Parker SR, Cutler HG, Jacyno JM (1997) Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J Agric Food Chem 45:2774–2776CrossRefGoogle Scholar
  78. Poiriera L, Quinioub F, Ruiza N (2007) Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. Aquat Toxicol 83:254–262CrossRefGoogle Scholar
  79. Reino JL, Guerrero RF, Hernández-Galán R et al (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123CrossRefGoogle Scholar
  80. Ruegger A, Kuhn M, Lichti H (1976) Cyclosporin A, a peptide metabolite from Trichoderma polysporum (Link ex Pers.) Rifai, with a remarkable immunosuppressive activity. Helv Chim Acta 59:1075–1092CrossRefGoogle Scholar
  81. Sarma BK, Yadav SK, Singh S (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33CrossRefGoogle Scholar
  82. Scarselletti R, Faull JL (1994) In vitro activity of 6-pentyl-a-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol Res 98:1207–1209CrossRefGoogle Scholar
  83. Simon A, Dunlop RW, Ghisalberti EL (1988) Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biol Biochem 20:263–264CrossRefGoogle Scholar
  84. Singh HB (2006) Trichoderma: a boon for biopesticides industry. J Mycol Plant Pathol 36:373–384Google Scholar
  85. Singh HB (2014a) Management of plant pathogens with microorganisms. Proc Indian Natl Sci Acad 80:443–454CrossRefGoogle Scholar
  86. Singh S, Dureja P, Tanwar RS (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29Google Scholar
  87. Singh HB, Singh BN, Singh SP (2012) Exploring different avenues of Trichoderma as a potent bio-fungicidal and plant growth promoting candidate-an overview. Rev Plant Pathol 5:315–426Google Scholar
  88. Singh HB, Singh A, Sarma BK (2014) Trichoderma viride 2% WP (Strain No. BHU-2953) formulation suppresses tomato wilt caused by Fusarium oxysporum f. sp. lycopersici and chilli damping-off caused by Pythium aphanidermatum effectively under different agroclimatic conditions. Int J Agric Environ Biotechnol 7:313–320CrossRefGoogle Scholar
  89. Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol 1. Taylor and Francis, London, pp 139–191Google Scholar
  90. Sperry S, Samuels GJ, Crews P (1998) Vertinoid polyketides from the saltwater culture of the fungus Trichoderma longibrachiatum separated from a Haliclon a marine sponge. J Org Chem 63:10011–10014CrossRefGoogle Scholar
  91. Stipanovic RD, Howell CR (1982) The structure of gliovirin, a new antibiotic from Gliocladium virens. J Antibiot 35:1326–1330CrossRefGoogle Scholar
  92. Stoppacher N, Kluger B, Zeilinger S (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GCMS. J Microbiol Methods 81:187–193CrossRefGoogle Scholar
  93. Tamura A, Kotani H, Naruto S (1975) Trichoviridin and dermadin from Trichoderma sp. TK-1. J Antibiot 28:161–162CrossRefGoogle Scholar
  94. Thimann KV (1937) On the nature of inhibitions caused by auxin. Am J Bot 24:407–412CrossRefGoogle Scholar
  95. Verma M, Brar SK, Tyagi RD (2007) Antagonistic fungi, Trichoderma spp. Panoply of biological control. Biochem Eng J 37:1–20CrossRefGoogle Scholar
  96. Vicente MF, Cabello A, Platas G (2001) Antimicrobial activity of ergokonin A from Trichoderma longibrachiatum. J Appl Microbiol 91:806–813CrossRefGoogle Scholar
  97. Vinale F, Marra R, Scala F (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148CrossRefGoogle Scholar
  98. Vinale F, Sivasithamparam K, Ghisalberti EL (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10CrossRefGoogle Scholar
  99. Vinale F, Flematti G, Sivasithamparam K (2009a) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032–2035CrossRefGoogle Scholar
  100. Vinale F, Ghisalberti EL, Sivasithamparam K (2009b) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711Google Scholar
  101. Vinale F, Arjona GI, Nigro M (2012a) Cerinolactone, a hydroxylactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106CrossRefGoogle Scholar
  102. Vinale F, Sivasithamparam K, Ghisalberti EL (2012b) Trichoderma secondary metabolites that affect plant metabolism. Nat Prod Commun 7:1545–1550Google Scholar
  103. Viterbo A, Wiest A, Brotman Y (2007) The 18mer peptaibols from Trichoderma virens elicit plant defense responses. Mol Plant Pathol 8:737–746CrossRefGoogle Scholar
  104. Watts R, Dahiya J, Chaudhary K (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107:81–84CrossRefGoogle Scholar
  105. Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology 34:1153Google Scholar
  106. Weindling R, Emerson O (1936) The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology 26:1068–1070Google Scholar
  107. Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 9–22CrossRefGoogle Scholar
  108. Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Amsterdam, pp 107–130CrossRefGoogle Scholar
  109. Woo SL, Scala F, Ruocco M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185CrossRefGoogle Scholar
  110. Worasatit N, Sivasithamparam K, Ghisalberti EL (1994) Variation in pyrone production, pectic enzymes and control of rhizoctonia root rot of wheat among single spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363CrossRefGoogle Scholar
  111. Yamano T, Hemmi S, Yamamoto I (1970) Trichoviridin, a new antibiotic. JP Patent 45015435Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chetan Keswani
    • 1
  • Kartikay Bisen
    • 1
  • Manoj Kumar Chitara
    • 1
  • Birinchi Kumar Sarma
    • 1
  • Harikesh Bahadur Singh
    • 1
    Email author
  1. 1.Department of Mycology and Plant PathologyInstitute of Agricultural Sciences, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations