Analysis of the Classification Methods of Cancer Types by Computer Tomography Images

  • Galina Artemova
  • Natalia Gusarova
  • Natalia Dobrenko
  • Vladislav Trofimov
  • Aleksandra Vatian
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 674)


The present work is aimed at improving the efficiency of selection of traits in order to increase the information value of the checked pulmonary node, as well as the comparative evaluation of machine learning algorithms for classification in CT images.


Machine learning Computer tomography Classification methods 


  1. 1.
    Armato III, S.G., McLennan, G., Bidaut, L., McNitt-Gray, M.F., Meyer, C.R., Reeves, A.P., Zhao, B., Aberle, D.R., Henschke, C.I., Hoffman, E.A.: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38, 915–931 (2011)CrossRefGoogle Scholar
  2. 2.
    Bankmann, N.: Handbook of Medical Imaging. Academic, New York (2000) Google Scholar
  3. 3.
    Kononenk, I.: Machine learning for medical diagnosis. History, state of the art and perspective. Artif. Intell. Med. 23, 89–109 (2001)CrossRefGoogle Scholar
  4. 4.
    Dettori, L., Semler, L.: A comparison of wavelet, ridgelet, and curvelet based texture classification algorithm in computed tomography. Comput. Biol. Med. 37, 486–498 (2007)CrossRefGoogle Scholar
  5. 5.
    Doi, K.: Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imaging Graph. 31(4–5), 198–211 (2007)CrossRefGoogle Scholar
  6. 6.
    Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., Parkin, D.M.: GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide (2012).
  7. 7.
    Gordon, G.J.: Translation of microarray data into clinically relevant cancer diagnostic tests using Gege expression ratios in lung cancer and mesothelioma. Cancer Res. 62, 4963–4967 (2002)Google Scholar
  8. 8.
    Hua, K.-L., Hsu, C.-H., Hidayati, S.C., Cheng, W.-H., Chen, Y.-J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets Ther. 8, 2015–2022 (2015)Google Scholar
  9. 9.
    Ko, J.P., Rusinek, H., Jacobs, E.L., Babb, J.S., Betke, M., McGuinness, G., Naidich, D.P.: Small pulmonary nodules: volume measurement at chest CT-phantom study. Radiology 228, 864–870 (2003)CrossRefGoogle Scholar
  10. 10.
    Kohad, R., Ahire, V.: Application of machine learning techniques for the diagnosis of lung cancer with ANT colony optimization. Int. J. Comput. Appl. 113(18), 34–41 (2015)Google Scholar
  11. 11.
    Kumar, D., Wong, A., Clausi, D.: Lung nodule classification using deep features in CT images. In: 12th Conference on Computer and Robot Vision (CRV), Halifax, NS, June 2015Google Scholar
  12. 12.
    Kumar, S., Moni, R., Rajeesh, J.: An automatic computer-aided diagnosis system for liver tumours on computed tomography images. Comput. Electr. Eng. 39, 1516–1526 (2013)CrossRefGoogle Scholar
  13. 13.
    Li, F.: Computer-aided detection of peripheral lung cancers missed at CT: ROC analyses without and with localization. Radiology 237(2), 684–690 (2005)CrossRefGoogle Scholar
  14. 14.
    Orozco, H.M., et al.: Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Biomed. Eng. 14(1), 9–17 (2015)Google Scholar
  15. 15.
    Reeves, A.P., Chan, A.B., Yankelevitz, D.F., Henschke, C.I., Kressler, B., Kostis, W.J.: On measuring the change in size of pulmonary nodules. IEEE Trans. Med. Imaging 25, 435–450 (2006)CrossRefGoogle Scholar
  16. 16.
    Sergeeva, M., Ryabchikov, I., Glaznev, M., Gusarova, N.: Classification of pulmonary nodules on computed tomography scans. Evaluation of the effectiveness of application of textural features extracted using wavelet transform of image. In: FRUCT 2016, 18–22 April 2016 (in print) Google Scholar
  17. 17.
    Valente, I.R.S., et al.: Automatic 3D pulmonary nodule detection in CT images: a survey. Comput. Meth. Prog. Biomed. 124, 91–107 (2015)CrossRefGoogle Scholar
  18. 18.
    Wiemker, R., Zwartkruis, A.: Optimal thresholding for 3d segmentation of pulmonary nodules in high resolution CT. In: Lemke, H.U., Vannier, M.W., Inamura, K., Farman, A.G., Doi, K. (eds.) Proceedings of the 15th International Congress and Exhibition on Computer Assisted Radiology and Surgery, CARS 2001, 27–30 June, pp. 653–658. Elsevier, Berlin (2001)Google Scholar
  19. 19.
    Wormanns, D., Diederich, S.: Characterization of small pulmonary nodules by CT. Eur. Radiol. 14, 1380–1391 (2004)Google Scholar
  20. 20.
    Yuan, R., Vos, P.M., Cooperberg, P.L.: Computer-aided detection in screening CT for pulmonary nodules. Am. J. Roentgenol. 186(5), 1280–1287 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Galina Artemova
    • 1
  • Natalia Gusarova
    • 1
  • Natalia Dobrenko
    • 1
  • Vladislav Trofimov
    • 1
  • Aleksandra Vatian
    • 1
  1. 1.ITMO UniversitySaint PetersburgRussian Federation

Personalised recommendations