Advertisement

Titin and Nebulin in Thick and Thin Filament Length Regulation

  • Larissa Tskhovrebova
  • John Trinick
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 82)

Abstract

In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or ‘molecular rulers’, terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.

Keywords

Vertebrate striated muscle Sarcomere structure Filaments lengths Molecular ruler hypothesis Titin/Connectin Nebulin 

Abbreviations

BTS

N-benzyl-p-toluenesulphonamide

Hsp90a

Heat shock protein 90a

ITF

Intra-flagellar transport machinery

ML-7

Myosin kinase inhibitor (and inhibitor to other kinases)

MLCK

Myosin light chain kinase

MyBP-C

Myosin binding protein-C (C-protein)

RyR

Ryanodine receptor

Tmod

Tropomodulin

TRiC/CCT

T-complex protein-1 ring complex

UNC45b

Protein unc-45 homolog B (unc45 myosin chaperone B)

References

  1. Abuladze NK, Gingery M, Tsai J, Eiserling FA (1994) Tail length determination in bacteriophage T4. Virology 199:301–310PubMedCrossRefGoogle Scholar
  2. Aizawa S-I (2012) Mystery of FliK in length control of the flagellar hook. J Bacteriol 194:4798–4800PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alahiotis SN (1983) Heat shock proteins: a new view on the temperature compensation. Comp Biochem Physiol 75B:379–387Google Scholar
  4. Albanèse V, Yam AY-W, Baughman J, Parnot C, Frydman J (2006) Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell 124:75–88PubMedCrossRefGoogle Scholar
  5. Al-Khayat HA, Kensler RW, Squire JM, Marston SB, Morris EP (2013) Atomic model of the human cardiac muscle myosin filament. Proc Natl Acad Sci U S A 110:318–323PubMedCrossRefGoogle Scholar
  6. Allen ER, Pepe FA (1965) Ultrastructure of developing muscle cells in the chick embryo. Am J Anat 116:115–148PubMedCrossRefGoogle Scholar
  7. Altschuler GM, Klug DR, Willison KR (2005) Unfolding energetics of G-alpha-actin: a discrete intermediate can be re-folded to the native state by CCT. J Mol Biol 353:385–396PubMedCrossRefGoogle Scholar
  8. Anderson BR, Granzier HL (2012) Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations. Prog Biophys Mol Biol 110(2–3,SI):204–217PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arimura T, Nakamura T, Hiroi S, Satoh M, Takahashi M, Ohbuchi N, Ueda K, Nouchi T, Yamaguchi N, Akai J, Matsumori A, Sasayama S, Kimura A (2000) Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy. Hum Genet 107:440–451PubMedCrossRefGoogle Scholar
  10. Bang M-L, Chen J (2015) Roles of nebulin family members in the heart. Circ J 79:2081–2087PubMedCrossRefGoogle Scholar
  11. Bang M-L, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, Expression of an unusual ~700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072PubMedCrossRefGoogle Scholar
  12. Bang M-L, Li X, Littlefield R, Bremner S, Thor A, Knowlton KU, Lieber RL, Chen J (2006) Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J Cell Biol 173:905–916PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barral JM, Hutagalung AH, Brinker A, Hartl FU, Epstein HF (2002) Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295:669–671PubMedCrossRefGoogle Scholar
  14. Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Genes Dev 3:131–140PubMedCrossRefGoogle Scholar
  15. Begum S, Komiyama M, Toyota N, Obinata T, Maruyama K, Shimada Y (1998) Differentiation of muscle-specific proteins in chicken somites as studied by immunofluorescence microscopy. Cell Tissue Res 293:305–311PubMedCrossRefGoogle Scholar
  16. Berman SA, Wilson NF, Haas NA, Lefebvre PA (2003) A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13:1145–1149PubMedCrossRefGoogle Scholar
  17. Brennan C, Mangoli M, Dyer CEF, Ashworth R (2005) Acetylcholine and calcium signalling regulates muscle fibre formation in the Zebrafish embryo. J Cell Sci 118:5181–5190PubMedCrossRefGoogle Scholar
  18. Buck D, Hudson BD, Ottenheijm CAC, Labeit S, Granzier H (2010) Differential splicing of the large sarcomeric protein nebulin during skeletal muscle development. J Struct Biol 170:325–333Google Scholar
  19. Bullard B, Linke WA, Leonard K (2002) Varieties of elastic protein in invertebrate muscles. J Muscle Res Cell Motil 23:435–447PubMedCrossRefGoogle Scholar
  20. Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D, Ding L, Labeit S, Horwitz J, Leonard KR, Linke WA (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279:7917–7924PubMedCrossRefGoogle Scholar
  21. Bullard B, Burkart C, Labeit S, Leonard K (2005) The function of elastic proteins in the oscillatory contraction of insect flight muscle. J Muscle Res Cell Motil 26:479–485PubMedCrossRefGoogle Scholar
  22. Burgoyne T, Muhamad F, Luther PK (2008) Visualization of cardiac muscle thin filaments and measurement of their lengths by electron tomography. Cardiovasc Res 77:707–712PubMedCrossRefGoogle Scholar
  23. Burkart C, Qiu F, Brendel S, Benes V, Hååg P, Labeit S, Leonard K, Bullard B (2007) Modular proteins from the Drosophila sallimus (sls) gene and their expression in muscles with different extensibility. J Mol Biol 367:953–969PubMedCrossRefGoogle Scholar
  24. Cantino ME, Chew MWK, Luther PK, Morris E, Squire JM (2002) Structure and nucleotide-dependent changes of thick filaments in relaxed and rigor plaice fin muscle. J Struct Biol 137:164–175PubMedCrossRefGoogle Scholar
  25. Carroll SL, Horowits R (2000) Myofibrillogenesis and formation of cell contacts mediate the localization of N-RAP in cultured chick cardiomyocytes. Cell Motil Cytoskeleton 47:63–76PubMedCrossRefGoogle Scholar
  26. Carroll S, Lu S, Herrera AH, Horowits R (2004) N-RAP scaffolds I-Z-I assembly during myofibrillogenesis in cultured chick cardiomyocytes. J Cell Sci 117:105–114PubMedCrossRefGoogle Scholar
  27. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24PubMedCrossRefGoogle Scholar
  28. Castillo A, Nowak R, Littlefield KP, Fowler VM, Littlefield RS (2009) A nebulin ruler does not dictate thin filament lengths. Biophys J 96:1856–1865PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitás K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67PubMedCrossRefGoogle Scholar
  30. Chen MJG, Wang K (1994) Conformational studies of a two-module fragment of nebulin and implications for actin association. Arch Biochem Biophys 310:310–317PubMedCrossRefGoogle Scholar
  31. Chen MJG, Shih CL, Wang K (1993) Nebulin as an actin zipper: a two-module nebulin fragment promotes actin nucleation and stabilizes actin filaments. J Biol Chem 268:20327–20334PubMedGoogle Scholar
  32. Chitose R, Watanabe A, Asano M, Hanashima A, Sasano K, Bao Y, Maruyama K, Kimura S (2010) Isolation of nebulin from rabbit skeletal muscle and its interaction with actin. J Biomed Biotech 2010:108495. doi: 10.1155/2010/108495 CrossRefGoogle Scholar
  33. Chu M, Gregorio CC, Pappas CT (2016) Nebulin, a multi-functional giant. J Exp Biol 219:146–152PubMedCrossRefGoogle Scholar
  34. Colley NJ, Tokuyasu KT, Singer SJ (1990) The early expression of myofibrillar proteins in round postmitotic myoblasts of embryonic skeletal muscle. J Cell Sci 95:11–22PubMedGoogle Scholar
  35. Collingridge P, Brownlee C, Wheeler GL (2013) Compartmentalized calcium signaling in cilia regulates intraflagellar transport. Curr Biol 23:2311–2318PubMedCrossRefGoogle Scholar
  36. Craig R, Offer G (1976) Axial arrangement of crossbridges in thick filaments of vertebrate skeletal muscle. J Mol Biol 102:325–332PubMedCrossRefGoogle Scholar
  37. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414PubMedPubMedCentralGoogle Scholar
  38. Crawford GL, Horowits R (2011) Scaffolds and chaperones in myofibril assembly: putting the striations in striated muscle. Biophys Rev 3:25–32PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cripps RM, Suggs JA, Bernstein SI (1999) Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J 18:1793–1804PubMedPubMedCentralCrossRefGoogle Scholar
  40. Davis JS (1981) Pressure-jump studies on the length-regulation kinetics of the self-assembly of myosin from vertebrate skeletal muscle into thick filament. Biochem J 197:309–314PubMedPubMedCentralCrossRefGoogle Scholar
  41. Davis JS (1985) Kinetics and thermodynamics of the assembly of the parallel- and antiparallel-packed sections of synthetic thick filaments of skeletal myosin: pressure-jump study. Biochemist 24:5263–5269CrossRefGoogle Scholar
  42. Davis JS (1988) Assembly processes in vertebrate skeletal thick filament formation. Annu Rev Biophys Biophys Chem 17:217–239PubMedCrossRefGoogle Scholar
  43. De Deyne P (2000) Formation of sarcomeres in developing myotubes: role of mechanical stretch and contractile activation. Am J Physiol 279:C1801–C1811Google Scholar
  44. Dessouky DA, Hibbs RG (1965) An electron microscope study of the development of the somatic muscle of the chick embryo. Am J Anat 116:523–566PubMedCrossRefGoogle Scholar
  45. Dlugosz AA, Antin PB, Nachmias VT, Holtzer H (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol 99:2268–2278PubMedCrossRefGoogle Scholar
  46. Donlin LT, Andresen C, Just S, Rudensky E, Pappas CT, Kruger M, Jacobs EY, Unger A, Zieseniss A, Dobenecker MW, Voelkel T, Chait BT, Gregorio CC, Rottbauer W, Tarakhovsky A, Linke WA (2012) Smyd2 controls cytoplasmic lysine methylation of Hsp90 and myofilament organization. Genes Dev 26:114–119PubMedPubMedCentralCrossRefGoogle Scholar
  47. Donner K, Sandbacka M, Lehtokari VL, Wallgren-Pettersson C, Pelin K (2004) Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. Eur J Hum Genet 12:744–751PubMedCrossRefGoogle Scholar
  48. Donner K, Nowak KJ, Aro M, Pelin K, Wallgren-Pettersson C (2006) Developmental and muscle-type-specific expression of mouse nebulin exons 127 and 128. Genomics 88:489–495PubMedCrossRefGoogle Scholar
  49. Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473PubMedCrossRefGoogle Scholar
  50. Du A, Sanger JM, Sanger JW (2008a) Cardiac myofibrillogenesis inside intact embryonic hearts. Dev Biol 318:236–246PubMedPubMedCentralCrossRefGoogle Scholar
  51. Du SJ, Li H, Bian Y, Zhong Y (2008b) Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A 105:554–559PubMedPubMedCentralCrossRefGoogle Scholar
  52. Du SJ, Tan X, Zhang J (2014) SMYD Proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec 297:1650–1662CrossRefGoogle Scholar
  53. Dunn AY, Melville MW, Frydman J (2001) Review: cellular substrates of the eukaryotic chaperonin TRiC/CCT. J Struct Biol 135:176–184PubMedCrossRefGoogle Scholar
  54. Eddinger TJ (1998) Myosin heavy chain isoforms and dynamic contractile properties: skeletal versus smooth muscle. Comp Biochem Physiol B 119:425–434PubMedCrossRefGoogle Scholar
  55. Eggers DK, Welch WJ, Hansen WJ (1997) Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol Biol Cell 8:1559–1573PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ehler E, Rothen BM, Hämmerle SP, Komiyama M, Perriard J-C (1999) Myofibrillogenesis in the developing chicken heart: assembly of Z-disk, M-line and the thick filaments. J Cell Sci 112:1529–1539PubMedGoogle Scholar
  57. Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187:81–89PubMedPubMedCentralCrossRefGoogle Scholar
  58. Esham M, Bryan K, Milnes J, Holmes WB, Moncman CL (2007) Expression of nebulette during early cardiac development. Cell Motil Cytoskeleton 64:258–273PubMedCrossRefGoogle Scholar
  59. Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strähle U (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 308:133–143PubMedCrossRefGoogle Scholar
  60. Etard C, Roostalu U, Strähle U (2008) Shuttling of the chaperones Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 180:1163–1175PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fernandes I, Schöck F (2014) The nebulin repeat protein Lasp regulates I-band architecture and filament spacing in myofibrils. J Cell Biol 206:559–572PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ferrari MB, Spitzer NC (1999) Calcium signaling in the developing Xenopus myotome. Dev Biol 213:269–282PubMedCrossRefGoogle Scholar
  63. Ferrari MB, Podugu S, Eskew JD (2006) Assembling the myofibril – coordinating contractile cable construction with calcium. Cell Biochem Biophys 45:317–336PubMedCrossRefGoogle Scholar
  64. Friedrich BM, Buxboim A, Discher DE, Safran SA (2011) Striated acto-myosin fibers can reorganize and register in response to elastic interactions with the matrix. Biophys J 100:2706–2715Google Scholar
  65. Fischman DA (1967) An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol 32:557–575PubMedPubMedCentralCrossRefGoogle Scholar
  66. Fowler VM, McKeown CR, Fischer RS (2006) Nebulin: does it measure up as a ruler? Curr Biol 16:R18–R20PubMedCrossRefGoogle Scholar
  67. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647PubMedCrossRefGoogle Scholar
  68. Fürst DO, Gautel M (1995) The anatomy of a molecular giant: how the sarcomere cytoskeleton is assembled from immunoglobulin superfamily molecules. J Mol Cell Cardiol 27:951–959PubMedCrossRefGoogle Scholar
  69. Fürst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572PubMedCrossRefGoogle Scholar
  70. Fürst DO, Nave R, Osborn M, Weber K (1989a) Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils. J Cell Sci 94:119–125PubMedGoogle Scholar
  71. Fürst DO, Osborn M, Weber K (1989b) Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol 109:517–527PubMedCrossRefGoogle Scholar
  72. Fürst DO, Vinkemeier U, Weber K (1992) Mammalian skeletal muscle C-protein: purification from bovine muscle, binding to titin and the characterization of a full-length human cDNA. J Cell Sci 102:769–778PubMedGoogle Scholar
  73. Gauthier GF, Mason-Savas A (1993) Ribosomes in the skeletal muscle filament lattice. Anat Rec 237:149–156PubMedCrossRefGoogle Scholar
  74. Gazda L, Pokrzywa W, Hellerschmied D, Löwe T, Forné I, Mueller-Planitz F, Hoppe T, Clausen T (2013) The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 152:183–195PubMedPubMedCentralCrossRefGoogle Scholar
  75. Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:N75CrossRefGoogle Scholar
  76. Geach TJ, Hirst EMA, Zimmerman LB (2015) Contractile activity is required for Z-disc sarcomere maturation in vivo. Genesis 53:299–307PubMedPubMedCentralCrossRefGoogle Scholar
  77. Goehring NW, Hyman AA (2012) Organelle growth control through limiting pools of cytoplasmic components. Curr Biol 22:R330–R339PubMedCrossRefGoogle Scholar
  78. Gokhin DS, Lewis RA, McKeown CR, Nowak RB, Kim NE, Littlefield RS, Lieber RL, Fowler VM (2010) Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology. J Cell Biol 189:95–109PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gokhin DS, Ochala J, Domenighetti AA, Fowler VM (2015) Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development 142:4351–4362PubMedPubMedCentralCrossRefGoogle Scholar
  80. Golenhofen N, Arbeiter A, Koob R, Drenckhahn D (2002) Ischemia-induced association of the stress protein αB-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34:309–319PubMedCrossRefGoogle Scholar
  81. Gotthardt M, Hammer RE, Hübner N, Monti J, Witt CC, McNabb M, Richardson JA, Granzier H, Labeit S, Herz J (2003) Conditional expression of mutant M-line titins results in cardiomyopathy with altered sarcomere structure. J Biol Chem 278:6059–6065PubMedCrossRefGoogle Scholar
  82. Gramlich M, Michely B, Krohne C, Heuser A, Erdmann B, Klaassen S, Hudson B, Magarin M, Kirchner F, Todiras M, Granzier H, Labeit S, Thierfelder L, Gerull B (2009) Stress-induced dilated cardiomyopathy in a knock-in mouse model mimicking human titin-based disease. J Mol Cell Cardiol 47:352–358PubMedPubMedCentralCrossRefGoogle Scholar
  83. Greaser ML, Pleitner JM (2014) Titin isoform size is not correlated with thin filament length in rat skeletal muscle. Front Physiol 5:1–9CrossRefGoogle Scholar
  84. Gregorio CC, Weber A, Bondad M, Pennise CR, Fowler VM (1995) Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377:83–86PubMedCrossRefGoogle Scholar
  85. Gu X, Spitzer NC (1995) Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375:784–787PubMedCrossRefGoogle Scholar
  86. Guo W, Bharmal SJ, Esbona K, Greaser ML (2010) Titin diversity - alternative splicing gone wild. J Biomed Biotech 2010:753675. doi: 10.1155/2010/753675
  87. Hagopian M, Spiro D (1968) The filament lattice of cockroach thoracic muscle. J Cell Biol 36:433–442PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hanashima A, Kubokawa K, Kimura S (2009) Structure of the amphioxus nebulin gene and evolution of the nebulin family genes. Gene 443:76–82PubMedCrossRefGoogle Scholar
  89. Handel SE, Greaser ML, Schultz E, Wang SM, Bulinski JC, Lin JJC, Lessard JL (1991) Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell Tissue Res 263:419–430PubMedCrossRefGoogle Scholar
  90. Harrington WF, Rodgers ME (1984) Myosin. Annu Rev Biochem 53:35–73PubMedCrossRefGoogle Scholar
  91. Harris BN, Li H, Terry M, Ferrari MB (2005) Calcium transients regulate titin organization during myofibrillogenesis. Cell Motil Cytoskeleton 60:129–139PubMedCrossRefGoogle Scholar
  92. Harrison RG, Lowey S, Cohen C (1971) Assembly of myosin. J Mol Biol 59:531–535PubMedCrossRefGoogle Scholar
  93. Hay ED (1963) The fine structure of differentiating muscle in the salamander tail. Zeitschrift fiir Zellforschung 59:6–34CrossRefGoogle Scholar
  94. Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384PubMedCrossRefGoogle Scholar
  95. Higuchi H, Ishiwata S (1985) Disassembly kinetics of thick filaments in rabbit skeletal muscle fibers: Effects of ionic strength, Ca2+ concentration, pH, temperature, and cross-bridges on the stability of thick filament structure. Biophys J 47:267–275PubMedPubMedCentralCrossRefGoogle Scholar
  96. Higuchi H, Funatsu T, Ishijima A, Okamura N, Ishiwata S (1986) Accumulated strain mechanism for length determination of thick filaments in skeletal muscle. I. Experimental bases. J Muscle Res Cell Motil 7:491–500PubMedCrossRefGoogle Scholar
  97. Hill CS, Duran S, Lin Z, Weber K, Holtzer H (1986) Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol 103:2185–2196PubMedCrossRefGoogle Scholar
  98. Holtzer H, Hijikata T, Lin ZX, Zhang ZQ, Holtzer S, Protasi F, Franzini-Armstrong C, Sweeney HL (1997) Independent assembly of 1.6 μm long bipolar MHC filaments and I-Z-I bodies. Cell Struct Funct 22:83–93PubMedCrossRefGoogle Scholar
  99. Hughes KT (2012) Flagellar hook length is controlled by a secreted molecular ruler. J Bacteriol 194:4793–4796PubMedPubMedCentralCrossRefGoogle Scholar
  100. Huxley HE (1957) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3:631–648PubMedPubMedCentralCrossRefGoogle Scholar
  101. Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308PubMedCrossRefGoogle Scholar
  102. Huxley HE (1967) Recent X-ray and electron microscope studies of striated muscle. J Gen Physiol 50:71–83Google Scholar
  103. Huxley HE, Brown W (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383–434Google Scholar
  104. Isaacs WB, Kim IS, Struve A, Fulton AB (1992) Association of titin and myosin heavy chain in developing skeletal muscle. Proc Natl Acad Sci U S A 89:7496–7500PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234PubMedCrossRefGoogle Scholar
  106. Ishiwata S (1981) Melting from both ends of an A-band in a myofibril: observation with a phase-contrast microscope. J Biochem 89:1647–1650PubMedGoogle Scholar
  107. Ishiwata S, Funatsu T (1985) Does actin bind to the ends of thin filaments in skeletal muscle? J Cell Biol 100:282–291PubMedCrossRefGoogle Scholar
  108. Ishiwata S, Muramatsu K, Higuchi H (1985) Disassembly from both ends of thick filaments in rabbit skeletal muscle fibers. Biophys J 47:257–266PubMedPubMedCentralCrossRefGoogle Scholar
  109. Jin J-P, Wang K (1991) Nebulin as a giant actin-binding template protein in skeletal muscle sarcomere: Interaction of actin and cloned human nebulin fragments. FEBS Lett 281:93–96PubMedCrossRefGoogle Scholar
  110. Josephs R, Harrington WF (1966) Studies on the formation and physical chemical properties of synthetic myosin filaments. Biochemistry 5:3474–3487PubMedCrossRefGoogle Scholar
  111. Journet L, Agrain C, Broz P, Cornelis GR (2003) The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–1760PubMedCrossRefGoogle Scholar
  112. Just S, Meder B, Berger IM, Etard C, Trano N, Patzel E, Hassel D, Marquart S, Dahme T, Vogel B, Fishman MC, Katus HA, Strähle U, Rottbauer W (2011) The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci 124:3127–3136PubMedCrossRefGoogle Scholar
  113. Kagawa M, Sato N, Obinata T (2006) Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture. Zool Sci 23:969–975PubMedCrossRefGoogle Scholar
  114. Kaminer B, Bell AL (1966) Synthetic myosin filaments. Science 151:323–324PubMedCrossRefGoogle Scholar
  115. Katsura I (1987) Determination of bacteriophage-lambda tail length by a protein ruler. Nature 327:73–75PubMedCrossRefGoogle Scholar
  116. Katsura I (1990) Mechanism of length determination in bacteriophage lambda tails. Adv Biophys 26:1–18PubMedCrossRefGoogle Scholar
  117. Katsura I, Noda H (1971) Studies on the formation and physical chemical properties of synthetic myosin filaments. J Biochem 69:219–229PubMedGoogle Scholar
  118. Katzemich A, Kreisköther N, Alexandrovich A, Elliott C, Schöck F, Leonard K, Sparrow J, Bullard B (2012) The function of the M-line protein obscurin in controlling the symmetry of the sarcomere in the flight muscle of Drosophila. J Cell Sci 125:3367–3379PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kawamura M, Maruyama K (1970) Electron microscopic particle length of F-actin polymerized in vitro. J Biochem 67:437–457PubMedGoogle Scholar
  120. Kazmierski ST, Antin PB, Witt CC, Huebner N, McElhinny AS, Labeit S, Gregorio CC (2003) The complete mouse nebulin gene sequence and the identification of cardiac nebulin. J Mol Biol 328:835–846PubMedCrossRefGoogle Scholar
  121. Kelly DE (1969) Myofibrillogenesis and Z-band differentiation. Anat Rec 163:403–426PubMedCrossRefGoogle Scholar
  122. Komiyama M, Zhou Z-H, Maruyama K, Shimada Y (1992) Spatial relationship of nebulin relative to other myofibrillar proteins during myogenesis in embryonic chick skeletal muscle cells in vitro. J Muscle Res Cell Motil 13:48–54PubMedCrossRefGoogle Scholar
  123. Komiyama M, Kouchi K, Maruyama K, Shimada Y (1993) Dynamics of actin and assembly of connectin (titin) during myofibrillogenesis in embryonic chick cardiac muscle cells in vitro. Dev Dyn 196:291–299PubMedCrossRefGoogle Scholar
  124. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89:1217–1267PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kruger M, Wright J, Wang K (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol 115:97–107PubMedCrossRefGoogle Scholar
  126. Kuhlman PA (2005) Dynamic changes in the length distribution of actin filaments during polymerization can be modulated by barbed end capping proteins. Cell Motil Cytoskeleton 61:1–8PubMedCrossRefGoogle Scholar
  127. Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296PubMedCrossRefGoogle Scholar
  128. Labeit S, Kolmerer B (1996) The complete primary structure of human nebulin and its correlation to muscle structure. J Mol Biol 248:308–315Google Scholar
  129. Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A, Trinick J (1990) A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345:273–276PubMedCrossRefGoogle Scholar
  130. Labeit S, Gibson T, Lakey A, Leonard K, Zeviani M, Knight P, Wardale J, Trinick J (1991) Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett 282:313–316PubMedCrossRefGoogle Scholar
  131. Labeit S, Gautel M, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716PubMedPubMedCentralGoogle Scholar
  132. Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513PubMedCrossRefGoogle Scholar
  133. Larsen TH, Sætersdal T (1998) Translocation of 60S ribosomal subunit in spreading cardiac myocytes. J Histochem Cytochem 46:963–969PubMedCrossRefGoogle Scholar
  134. Larson PF, Hudgson P, Walton JN (1969) Morphological relationship of polyribosomes and myosin filaments in developing and regenerating skeletal muscle. Nature 222:1168–1169PubMedCrossRefGoogle Scholar
  135. Larson PF, Fulthorpe JJ, Hudgson P (1973) Alignment of polysomes along myosin filaments in developing myofibrils. J Anat 116:327–334PubMedPubMedCentralGoogle Scholar
  136. Lazarides E, Burridge K (1975) alpha-Actinin: immunofluorescent localization of a muscle structural protein in nonmuscle cells. Cell 6:289–298PubMedCrossRefGoogle Scholar
  137. Levy DL, Heald R (2012) Mechanisms of intracellular scaling. Annu Rev Cell Dev Biol 28:113–135PubMedCrossRefGoogle Scholar
  138. Li S, Guo W, Schmitt BM, Greaser ML (2012) Comprehensive analysis of titin protein isoform and alternative splicing in normal and mutant rats. J Cell Biol 113:1265–1273Google Scholar
  139. Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ (2013) Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell 24:3511–3521PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lin ZX, Schultheiss T, Choi J, Holtzer S, Dilullo C, Fischman DA, Holtzer H (1994) Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division – evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton 29:1–19PubMedCrossRefGoogle Scholar
  141. Littlefield R, Fowler VM (2002) Measurement of thin filament lengths by distributed deconvolution analysis of fluorescence images. Biophys J 82:2548–2564PubMedPubMedCentralCrossRefGoogle Scholar
  142. Liversage AD, Holmes D, Knight PJ, Tskhovrebova L, Trinick J (2001) Titin and the sarcomere symmetry paradox. J Mol Biol 305:401–409PubMedCrossRefGoogle Scholar
  143. Llorca O, McCormack EA, Hynes G, Grantham J, Cordell J, Carrascosa JL, Willison KR, Fernandez JJ, Valpuesta JM (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402:693–696PubMedCrossRefGoogle Scholar
  144. Lorenzon P, Giovannelli A, Ragozzino D, Eusebi F, Ruzzier F (1997) Spontaneous and repetitive calcium transients in C2C12 mouse myotubes during in vitro myogenesis. Eur J Neurosci 9:800–808Google Scholar
  145. Lu MH, DiLullo C, Schultheiss T, Holtzer S, Murray JM, Choi J, Fischman DA, Holtzer H (1992) The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol 117:1007–1022PubMedCrossRefGoogle Scholar
  146. Lu S, Carroll SL, Herrera AH, Ozanne B, Horowits R (2003) New N-RAP-binding partners α-actinin, filamin and Krp1 detected by yeast two-hybrid screening: implications for myofibril assembly. J Cell Sci 116:2169–2178PubMedCrossRefGoogle Scholar
  147. Luo G, Herrera AH, Horowits R (1999) Molecular interactions of N-RAP, a nebulin-related protein of striated muscle myotendon junctions and intercalated disks. Biochemistry 38:6135–6143PubMedCrossRefGoogle Scholar
  148. Makishima S, Komoriya K, Yamaguchi S, Aizawa S-I (2001) Length of the flagellar hook and the capacity of the Type III export apparatus. Science 291:2411–2413PubMedCrossRefGoogle Scholar
  149. Manisastry SM, Zaal KJM, Horowits R (2009) Myofibril assembly visualized by imaging N-RAP, alpha-actinin, and actin in living cardiomyocytes. Exp Cell Res 315:2126–2139PubMedPubMedCentralCrossRefGoogle Scholar
  150. Manor U, Kachar B (2008) Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol 19:502–510PubMedPubMedCentralCrossRefGoogle Scholar
  151. Mardahl-Dumesnil M, Fowler VM (2001) Thin filaments elongate from their pointed ends during myofibril assembly in Drosophila indirect flight muscle. J Cell Biol 155:1043–1053PubMedPubMedCentralCrossRefGoogle Scholar
  152. Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE (2006) Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640PubMedCrossRefGoogle Scholar
  153. Marshall WF (2002) Size control in dynamic organelles. Trends Cell Biol 12:414–419PubMedCrossRefGoogle Scholar
  154. Marshall WF (2015) How cells measure length on subcellular scales. Trends Cell Biol 25:760–768PubMedPubMedCentralCrossRefGoogle Scholar
  155. Marshall WF, Rosenbaum JL (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155:405–414PubMedPubMedCentralCrossRefGoogle Scholar
  156. Marshall WF, Qin HM, Brenni MR, Rosenbaum JL (2005) Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Mol Biol Cell 16:270–278PubMedPubMedCentralCrossRefGoogle Scholar
  157. Maruyama K, Natori R, Nonomura Y (1976) New elastic protein from muscle. Nature 262:58–60PubMedCrossRefGoogle Scholar
  158. Maruyama K, Matsuno A, Higuchi H, Shimaoka S, Kimura S, Shimizu T (1989) Behaviour of connectin (titin) and nebulin in skinned muscle fibres released after extreme stretch as revealed by immunoelectron microscopy. J Muscle Res Cell Motil 10:350–359PubMedCrossRefGoogle Scholar
  159. Mastrototaro G, Liang X, Li X, Carullo P, Piroddi N, Tesi C, Gu Y, Dalton ND, Peterson KL, Poggesi C, Sheikh F, Chen J, Bang M-L (2015) Nebulette knockout mice have normal cardiac function, but show Z-line widening and up-regulation of cardiac stress markers. Cardiovasc Res 107:216–225PubMedPubMedCentralCrossRefGoogle Scholar
  160. McElhinny AS, Kolmerer B, Fowler VM, Labeit S, Gregorio CC (2001) The N-terminal end of nebulin interacts with tropomodulin at the pointed ends of the thin filaments. J Biol Chem 276:583–592PubMedCrossRefGoogle Scholar
  161. McElhinny AS, Schwach C, Valichnac M, Mount-Patrick S, Gregorio CC (2005) Nebulin regulates the assembly and lengths of the thin filaments in striated muscle. J Cell Biol 170:947–957PubMedPubMedCentralCrossRefGoogle Scholar
  162. Miller G, Musa H, Gautel M, Peckham M (2003) A targeted deletion of the C-terminal end of titin, including the titin kinase domain, impairs myofibrillogenesis. J Cell Sci 116:4811–4819PubMedCrossRefGoogle Scholar
  163. Millevoi S, Trombitás K, Kolmerer B, Kostin S, Schaper J, Pelin K, Granzier H, Labeit S (1998) Characterization of nebulette and nebulin and emerging concepts of their roles for vertebrate Z-discs. J Mol Biol 282:111–123Google Scholar
  164. Miyahara M, Noda H (1980) Interaction of C-protein with myosin. J Biochem 87:1413–1420PubMedGoogle Scholar
  165. Moncman CL, Wang K (1995) Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskeleton 32:205–225PubMedCrossRefGoogle Scholar
  166. Moncman CL, Wang K (1996) Assembly of nebulin into the sarcomeres of avian skeletal muscle. Cell Motil Cytoskeleton 34:167–184PubMedCrossRefGoogle Scholar
  167. Moos C, Offer G, Starr R, Bennett P (1975) Interaction of C-Protein with myosin, myosin rod and light meromyosin. J Mol Biol 97:1–9PubMedCrossRefGoogle Scholar
  168. Moriya N, Minamino T, Hughes KT, Macnab RM, Namba K (2006) The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J Mol Biol 359:466–477PubMedCrossRefGoogle Scholar
  169. Musa H, Meek S, Gautel M, Peddie D, Smith AJH, Peckham M (2006) Targeted homozygous deletion of M-band titin in cardiomyocytes prevents sarcomere formation. J Cell Sci 119:4322–4331PubMedCrossRefGoogle Scholar
  170. Myhre JL, Pilgrim DB (2012) At the start of the sarcomere: a previously unrecognized role for myosin chaperones and associated proteins during early myofibrillogenesis. Biochem Res Int 712315.doi:10.1155/2012/712315Google Scholar
  171. Myhre JL, Hills JA, Prill K, Wohlgemuth SL, Pilgrim DB (2014) The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish. Dev Biol 387:93–108PubMedCrossRefGoogle Scholar
  172. Myklebust R, Sœtersdal TS, Engedal H, Ulstein M, Ødegården S (1978) Ultrastructural studies on the formation of myofilaments and myofibrils in the human embryonic and adult hypertrophied heart. Anat Embryol 152:127–140PubMedCrossRefGoogle Scholar
  173. Nagandla H, Lopez S, Yu W, Rasmussen TL, Tucker HO, Schwartz RJ, Stewart MD (2016) Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol 410:86–97PubMedCrossRefGoogle Scholar
  174. Nave R, Fürst DO, Weber K (1989) Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J Cell Biol 109:2177–2187PubMedCrossRefGoogle Scholar
  175. Nwe TM, Maruyama K, Shimada Y (1999) Relation of nebulin and connectin (titin) to dynamics of actin in nascent myofibrils of cultured skeletal muscle cells. Exp Cell Res 252:33–40PubMedCrossRefGoogle Scholar
  176. O’Brien EJ, Bennett PM, Hanson J (1971) Optical diffraction studies of myofibrillar structure. Philos Trans R Soc Lond B 261:201–208CrossRefGoogle Scholar
  177. Obinata T, Yamamoto M, Maruyama K (1966) The identification of randomly formed thin filaments in differentiating muscle cells of the chick embryo. Dev Biol 14:192–213PubMedCrossRefGoogle Scholar
  178. Oda T, Yanagisawa H, Kamiya R, Kikkawa M (2014) A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346:857–860PubMedCrossRefGoogle Scholar
  179. Oda T, Abe T, Yanagisawa H, Kikkawa M (2016) Docking-complex-independent alignment of Chlamydomonas outer dynein arms with 24-nm periodicity in vitro. J Cell Sci 129:1547–1551PubMedCrossRefGoogle Scholar
  180. Ogut O, Hossain MM, Jin JP (2003) Interactions between nebulin-like motifs and thin filament regulatory proteins. J Biol Chem 278:3089–3097PubMedCrossRefGoogle Scholar
  181. Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975PubMedCrossRefGoogle Scholar
  182. Orfanos Z, Sparrow JC (2012) Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice. J Cell Sci 126:139–148PubMedCrossRefGoogle Scholar
  183. Orfanos Z, Leonard K, Elliott C, Katzemich A, Bullard B, Sparrow J (2015) Sallimus and the dynamics of sarcomere assembly in Drosophila flight muscles. J Mol Biol 427:2151–2158PubMedCrossRefGoogle Scholar
  184. Ottenheijm CAC, Knottnerus AM, Buck D, Luo X, Greer K, Hoying A, Labeit S, Granzier H (2009) Tuning passive mechanics through differential splicing of titin during skeletal muscle development. Biophys J 97:2277–2286PubMedPubMedCentralCrossRefGoogle Scholar
  185. Owa M, Furuta A, Usukura J, Arisaka F, King SM, Witman GB, Kamiya R, Wakabayashi K (2014) Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. Proc Natl Acad Sci U S A 111:9461–9466PubMedPubMedCentralCrossRefGoogle Scholar
  186. Page SG, Huxley HE (1963) Filament lengths in striated muscle. J Cell Biol 19:369–390PubMedPubMedCentralCrossRefGoogle Scholar
  187. Pappas CT, Krieg PA, Gregorio CC (2010) Nebulin regulates actin filament lengths by a stabilization mechanism. J Cell Biol 189:859–870PubMedPubMedCentralCrossRefGoogle Scholar
  188. Pappas CT, Bliss KT, Zieseniss A, Gregorio CC (2011) The nebulin family: an actin support group. Trends Cell Biol 21:29–37PubMedCrossRefGoogle Scholar
  189. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496PubMedCrossRefGoogle Scholar
  190. Pelham H (1985) Activation of heat-shock genes in eukaryotes. Trends Genet 1:31–35CrossRefGoogle Scholar
  191. Peng J, Raddatz K, Labeit S, Granzier H, Gotthardt M (2005) Muscle atrophy in titin M-line deficient mice. J Muscle Res Cell Motil 26:381–388PubMedCrossRefGoogle Scholar
  192. Peng J, Raddatz K, Molkentin JD, Wu Y, Labeit S, Granzier H, Gotthardt M (2007) Cardiac hypertrophy and reduced contractility in hearts deficient in the titin kinase region. Circulation 115:743–751PubMedCrossRefGoogle Scholar
  193. Pepe FA (1967) The myosin filament. I Structural organization from antibody staining observed in electron microscopy. J Mol Biol 37:203–225CrossRefGoogle Scholar
  194. Person V, Kostin S, Suzuki K, Labeit S, Schaper J (2000) Antisense oligonucleotide experiments elucidate the essential role of titin in sarcomerogenesis in adult rat cardiomyocytes in long-term culture. J Cell Sci 113:3851–3859PubMedGoogle Scholar
  195. Pfuhl M, Winder SJ, Pastore A (1994) Nebulin, a helical actin-binding protein. EMBO J 13:1782–1789PubMedPubMedCentralGoogle Scholar
  196. Pierobon-Bormioli S, Betto R, Salviati G (1989) The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study. J Muscle Res Cell Motil 10:446–456PubMedCrossRefGoogle Scholar
  197. Pinset-Härström I (1985) MgATP specifically controls in vitro self-assembly of vertebrate skeletal myosin in the physiological pH range. J Mol Biol 182:159–172PubMedCrossRefGoogle Scholar
  198. Pizon V, Iakovenko A, van der Ven PFM, Kelly R, Fatu C, Fürst DO, Karsenti E, Gautel M (2002) Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 115:4469–4482PubMedCrossRefGoogle Scholar
  199. Pizon V, Gerbal F, Diaz CC, Karsenti E (2005) Microtubule-dependent transport and organization of sarcomeric myosin during skeletal muscle differentiation. EMBO J 24:3781–3792PubMedPubMedCentralCrossRefGoogle Scholar
  200. Pokrzywa W, Hoppe T (2013) Chaperoning myosin assembly in muscle formation and aging. Worm 2(3):e25644. doi: 10.4161/worm.25644 PubMedPubMedCentralCrossRefGoogle Scholar
  201. Ramachandran I, Terry M, Ferrari MB (2003) Skeletal muscle myosin cross-bridge cycling is necessary for myofibrillogenesis. Cell Motil Cytoskeleton 55:61–72PubMedCrossRefGoogle Scholar
  202. Reedy MC, Beall C (1993) Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev Biol 160:443–465PubMedCrossRefGoogle Scholar
  203. Reedy MC, Bullard B, Vigoreaux JO (2000) Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol 151:1483–1499PubMedPubMedCentralCrossRefGoogle Scholar
  204. Reisler E, Smith C, Seegan G (1980) Myosin mini-filaments. J Mol Biol 143:129–145PubMedCrossRefGoogle Scholar
  205. Rhee D, Sanger JM, Sanger JW (1994) The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton 28:1–24PubMedCrossRefGoogle Scholar
  206. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266PubMedCrossRefGoogle Scholar
  207. Ringkob TP, Swartz DR, Greaser ML (2004) Light microscopy and image analysis of thin filament lengths utilizing dual probes on beef, chicken, and rabbit myofibrils. J Anim Sci 82:1445–1453PubMedCrossRefGoogle Scholar
  208. Robinson TF, Winegrad S (1977) Variation of thin filament length in heart muscle. Nature 267:74–75PubMedCrossRefGoogle Scholar
  209. Robinson TF, Winegrad S (1979) The measurement and dynamic implications of thin filament lengths in heart muscle. J Physiol 286:607–619PubMedPubMedCentralCrossRefGoogle Scholar
  210. Rudy DE, Yatskievych TA, Antin PB, Gregorio CC (2001) Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev Dyn 221:61–71PubMedCrossRefGoogle Scholar
  211. Russel B, Dix DJ (1992) Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. Am J Physiol 262:C1–C8Google Scholar
  212. Russel B, Wenderoth MP, Goldspink PH (1992) Remodeling of myofibrils: subcellular distribution of myosin heavy chain mRNA and protein. Am J Physiol 262:R339–R345Google Scholar
  213. Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol 289:H2291–H2301Google Scholar
  214. Sanger JW, Kang S, Siebrands CC, Freeman N, Du A, Wang J, Stout AL, Sanger JM (2005) How to build a myofibril. J Muscle Res Cell Motil 26:343–354PubMedCrossRefGoogle Scholar
  215. Sanger JW, Wang J, Fan Y, White J, Sanger JM (2010) Assembly and dynamics of myofibrils. J Biomed Biotech 2010:858606. doi: 10.1155/2010/858606 CrossRefGoogle Scholar
  216. Schaart G, Viebahn C, Langmann W, Ramaekers F (1989) Desmin and titin expression in early postimplantation mouse embryos. Development 107:585–596PubMedGoogle Scholar
  217. Schultheiss T, Lin Z, Lu MH, Murray J, Fischman DA, Weber K, Masaki T, Imamura M, Holtzer H (1990) Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol 110:1159–1172PubMedCrossRefGoogle Scholar
  218. Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100:238–245PubMedCrossRefGoogle Scholar
  219. Shih CL, Chen MJG, Linse K, Wang K (1997) Molecular contacts between nebulin and actin: cross-linking of nebulin modules to the N-terminus of actin. Biochemist 36:1814–1825CrossRefGoogle Scholar
  220. Shimada Y, Fischman DA, Moscona AA (1967) The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J Cell Biol 35:445–453PubMedPubMedCentralCrossRefGoogle Scholar
  221. Sjöström M, Squire JM (1977) Fine structure of the A-band in cryo-sections: the structure of the A-band of human skeletal muscle fibres from ultra-thin cryo-sections negatively stained. J Mol Biol 109:49–68PubMedCrossRefGoogle Scholar
  222. Smith DA, Carland CR, Guo Y, Bernstein SI (2014) Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec 297:1637–1649CrossRefGoogle Scholar
  223. Soeno Y, Shimada Y, Obinata T (1999) BDM (2,3-butanedione monoxime), an inhibitor of myosin-actin interaction, suppresses myofibrillogenesis in skeletal muscle cells in culture. Cell Tissue Res 295:307–316PubMedCrossRefGoogle Scholar
  224. Sœtersdal T, Engedal H, Lie R, Myklebust R (1980) On the origin of Z-band material and myofilaments in myoblasts from the human atrial wall. Cell Tissue Res 207:21–29Google Scholar
  225. Song L, Dentler WL (2001) Flagellar protein dynamics in Chlamydomonas. J Biol Chem 276:29754–29763PubMedCrossRefGoogle Scholar
  226. Sonoda M, Kimura S, Moriya H, Shimada Y, Maruyama K (1990) Molecular shape of alpha-connectin, an elastic filamentous protein of skeletal muscle. Proc Jpn Acad Ser B 66:213–216CrossRefGoogle Scholar
  227. Sosnicki AA, Loesser KE, Rome LC (1991) Myofilament overlap in swimming carp. I. Myofilament lengths of red and white muscle. Am J Physiol 260:C283–C288Google Scholar
  228. Soteriou A, Gamage M, Trinick J (1993) A survey of interactions made by the giant protein titin. J Cell Sci 104:119–123PubMedGoogle Scholar
  229. Sparrow JC, Schöck F (2009) The initial steps of myofibril assembly: integrins pave the way. Nat Rev Mol Cell Biol 10:293–298PubMedCrossRefGoogle Scholar
  230. Spiess C, Meyer AS, Reissmann S, Frydman J (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol 14:598–604PubMedPubMedCentralCrossRefGoogle Scholar
  231. Spiro D, Sonnenblick EH (1964) Comparison of the ultrastructural basis of the contractile process in heart and skeletal muscle. Circ Res 15:14–37Google Scholar
  232. Spitzer NC (1994) Spontaneous Ca2+ spikes and waves in embryonic neurons: signaling systems for differentiation. TINS 17:115–118PubMedGoogle Scholar
  233. Spotnitz HM, Sonnenblick EH, Spiro D (1966) Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res 18:49–66PubMedCrossRefGoogle Scholar
  234. Squire JM, Roessle M, Knupp C (2004) New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band. J Mol Biol 343:1345–1363PubMedCrossRefGoogle Scholar
  235. Srikakulam R, Liu L, Winkelmann DA (2008) Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS One 3(5):e2137. doi: 10.1371/journal.pone.0002137 PubMedPubMedCentralCrossRefGoogle Scholar
  236. Sternlicht H, Farr GW, Sternlicht ML, Driscoll JK, Willison K, Yaffe MB (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci U S A 90:9422–9426PubMedPubMedCentralCrossRefGoogle Scholar
  237. Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176:819–829PubMedPubMedCentralCrossRefGoogle Scholar
  238. Tan X, Rotllant J, Li H, DeDeyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci U S A 103:2713–2718PubMedPubMedCentralCrossRefGoogle Scholar
  239. Thulasiraman V, Yang CF, Frydman J (1999) In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J 18:85–95PubMedPubMedCentralCrossRefGoogle Scholar
  240. Tilney LG, Tilney MS, DeRosier DJ (1992) Actin filaments, sterocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 8:257–274PubMedCrossRefGoogle Scholar
  241. Tokuyasu KT, Maher PA (1987a) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol 105:2781–2793PubMedCrossRefGoogle Scholar
  242. Tokuyasu KT, Maher PA (1987b) Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos.II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. J Cell Biol 105:2795–2801PubMedCrossRefGoogle Scholar
  243. Tondeleir D, Vandamme D, Vandekerckhove J, Ampe C, Lambrechts A (2009) Actin isoform expression patterns during mammalian development and in pathology: insights from mouse models. Cell Motil Cytoskeleton 66:798–815PubMedCrossRefGoogle Scholar
  244. Tonino P, Pappas CT, Hudson BD, Labeit S, Gregorio CC, Granzier H (2010) Reduced myofibrillar connectivity and increased Z-disk width in nebulin-deficient skeletal muscle. J Cell Sci 123:384–391PubMedPubMedCentralCrossRefGoogle Scholar
  245. Traeger L, Goldstein MA (1983) Thin filaments are not of uniform length in rat skeletal muscle. J Cell Biol 96:100–103PubMedCrossRefGoogle Scholar
  246. Trinick J (1992) Molecular rulers in muscle? Curr Biol 2:75–77PubMedCrossRefGoogle Scholar
  247. Trinick J, Cooper J (1980) Sequential disassembly of vertebrate muscle thick filaments. J Mol Biol 141:315–321PubMedCrossRefGoogle Scholar
  248. Trinick J, Knight P, Whiting A (1984) Purification and properties of native titin. J Mol Biol 180:331–356PubMedCrossRefGoogle Scholar
  249. Trombitás K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79:3226–3234PubMedPubMedCentralCrossRefGoogle Scholar
  250. Trombitás K, Wu Y, Labeit D, Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol 281:H1793–H1799Google Scholar
  251. Tskhovrebova L, Trinick J (2001) Flexibility and extensibility in the titin molecule: analysis of electron microscope data. J Mol Biol 310:755–771PubMedCrossRefGoogle Scholar
  252. Tskhovrebova L, Trinick J (2003) Titin: Properties and family relationship. Nat Rev Mol Cell Biol 4:679–689PubMedCrossRefGoogle Scholar
  253. Tskhovrebova L, Walker ML, Grossmann JG, Khan GN, Baron A, Trinick J (2010) Shape and flexibility in the titin 11-domain super-repeat. J Mol Biol 397:1092–1105PubMedCrossRefGoogle Scholar
  254. Tu MK, Levin JB, Hamilton AM, Borodinsky LN (2016) Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 59:91–97PubMedCrossRefGoogle Scholar
  255. Tuxhorn J, Daise T, Dentler WL (1998) Regulation of flagellar length in Chlamydomonas. Cell Motil Cytoskeleton 40:133–146PubMedCrossRefGoogle Scholar
  256. van der Loop FTL, Schaart G, Langmann W, Ramaekers FCS, Viebahn C (1992) Expression and organization of muscle specific proteins during the early developmental stages of the rabbit heart. Anat Embryol 185:439–450PubMedCrossRefGoogle Scholar
  257. van der Loop FTL, van Eys GJJ, Schaart G, Ramaekers FCS (1996a) Titin expression as an early indication of heart and skeletal muscle differentiation in vitro. Developmental re-organisation in relation to cytoskeletal constituents. J Muscle Res Cell Motil 17:23–36PubMedCrossRefGoogle Scholar
  258. van der Loop FTL, van der Ven PFM, Fürst DO, Gautel M, van Eys GJJ, Ramaekers FCS (1996b) Integration of titin into sarcomeres of cultured differentiating human skeletal muscle cells. Eur J Cell Biol 69:301–307PubMedGoogle Scholar
  259. van der Ven PFM, Ehler E, Perriard J-C, Fürst DO (1999) Thick filament assembly occurs after the formation of a cytoskeletal scaffold. J Muscle Res Cell Motil 20:569–579PubMedCrossRefGoogle Scholar
  260. van der Ven PFM, Bartsch JW, Gautel M, Jockusch H, Fürst DO (2000) A functional knock-out of titin results in defective myofibril assembly. J Cell Sci 113:1405–1414PubMedGoogle Scholar
  261. Vigoreaux JO, Saide JD, Valgeirsdottir K, Pardue ML (1993) Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol 121:587–598PubMedCrossRefGoogle Scholar
  262. Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA (2013) Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochim Biophys Acta/Mol Cell Res 1833:812–822CrossRefGoogle Scholar
  263. Walker SM, Schrodt GR (1974) I Segment lengths and thin fi1ament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec 178:63–81PubMedCrossRefGoogle Scholar
  264. Wang K, Williamson CL (1980) Identification of an N2 line protein of striated muscle. Proc Natl Acad Sci U S A 77:3254–3258PubMedPubMedCentralCrossRefGoogle Scholar
  265. Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z Line. J Cell Biol 107:2199–2212Google Scholar
  266. Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A 76:3698–3702PubMedPubMedCentralCrossRefGoogle Scholar
  267. Wang K, Ramirez-Mitchell R, Palter D (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein. Proc Natl Acad Sci U S A 81:3685–3689PubMedPubMedCentralCrossRefGoogle Scholar
  268. Wang S-M, Greaser ML, Schultz E, Bulinski JC, Lin JJ-C, Lessard JL (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 107:1075–1083PubMedCrossRefGoogle Scholar
  269. Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci U S A 88:7101–7105PubMedPubMedCentralCrossRefGoogle Scholar
  270. Wang K, Knipfer M, Huang Q-Q, van Heerden A, Hsu LC-L, Gutierrez G, Quian X-L, Stedman H (1996) Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. J Biol Chem 271:4304–4314PubMedCrossRefGoogle Scholar
  271. Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312PubMedCrossRefGoogle Scholar
  272. Weber A, Pennise CR, Babcock GG, Fowler VM (1994) Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127:1627–1635PubMedCrossRefGoogle Scholar
  273. Wee DH, Hughes KT (2015) Molecular ruler determines needle length for the Salmonella Spi-1 injectisome. Proc Natl Acad Sci U S A 112:4098–4103PubMedPubMedCentralCrossRefGoogle Scholar
  274. Weinert S, Bergmann N, Luo X, Erdmann B, Gotthardt M (2006) M line–deficient titin causes cardiac lethality through impaired maturation of the sarcomere. J Cell Biol 173:559–570Google Scholar
  275. Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268Google Scholar
  276. Wilson NF, Lefebvre PA (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot Cell 3:1307–1319PubMedPubMedCentralCrossRefGoogle Scholar
  277. Wilson NF, Iyer JK, Buchheim JA, Meek W (2008) Regulation of flagellar length in Chlamydomonas. Semin Cell Dev Biol 19:494–501PubMedPubMedCentralCrossRefGoogle Scholar
  278. Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H, Labeit S (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855PubMedPubMedCentralCrossRefGoogle Scholar
  279. Wohlgemuth SL, Crawford BD, Pilgrim DB (2007) The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 303:483–492PubMedCrossRefGoogle Scholar
  280. Wright J, Huang Q-Q, Wang K (1993) Nebulin is a full-length template of actin filaments in the skeletal muscle sarcomere: an immunoelectron microscopic study of its orientation and span with site-specific monoclonal antibodies. J Muscle Res Cell Motil 14:476–483Google Scholar
  281. Xu X, Meiler SE, Zhong TP, Mohideen M, Crossley DA, Burggren WW, Fischman MC (2002) Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat Genet 30:205–209PubMedGoogle Scholar
  282. Xu J, Hendrix RW, Duda RL (2014) Chaperone–protein interactions that mediate assembly of the bacteriophage lambda tail to the correct length. J Mol Biol 426:1004–1018PubMedCrossRefGoogle Scholar
  283. Yadavalli VK, Forbes JG, Wang K (2009) Nanomechanics of full-length nebulin: an elastic strain gauge in the skeletal muscle sarcomere. Langmuir 25:7496–7505PubMedPubMedCentralCrossRefGoogle Scholar
  284. Yamashiro S, Gokhin DS, Kimura S, Nowak RB, Fowler VM (2012) Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types. Cytoskeleton 69:337–370PubMedPubMedCentralCrossRefGoogle Scholar
  285. Yang J, Shih YH, Xu X (2014) Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec/Adv Integr Evol Biol 297:1681–1693CrossRefGoogle Scholar
  286. Yasuda K, Fujita H, Fujiki Y, Ishiwata S (1994) Length regulation of thin filaments without nebulin. Proc Japan Acad Ser B/Phys Biol Sci 70:151–156CrossRefGoogle Scholar
  287. Zhang JQ, Luo G, Herrera AH, Paterson B, Horowits R (1996) cDNA cloning of mouse nebulin: evidence that the nebulin-coding sequence is highly conserved among vertebrates. Eur J Biochem 239:835–841PubMedCrossRefGoogle Scholar
  288. Zoghbi ME, Woodhead JL, Moss RL, Craig R (2008) Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc Natl Acad Sci U S A 105:2386–2390PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Astbury Centre, School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK

Personalised recommendations