Skip to main content

Agrobacterium-Mediated Genetic Transformation for Larger Seed Size in Jatropha

  • Chapter
  • First Online:
The Jatropha Genome

Abstract

Jatropha, Jatropha curcas, is known as the oilseed plant that yields biofuel. An average of 30–40% of a single Jatropha seed is made of oils and fats and can be processed for use as diesel engine fuel. This chapter is concerned with using transgenic approaches to increase oil production in Jatropha. At present, we are attempting to make larger Jatropha seeds by transferring rice genes coupled with the CaMV35S promoter into Jatropha plants. We found candidate rice genes that produce increased seed size in other plants (Arabidopsis thaliana) by using rice Full-Length cDNA OvereXpressing gene 14 hunting system. We are transferring four genes (LOC_Os08g41910 encoding Sua5/YciO/YrdC/YwlC family protein, LOC_Os04g43210 encoding probable inositol transporter 2-like, LOC_Os03g49180 encoding alkaline ceramidase, and LOC_Os10g40934 encoding putative flavonol synthase/flavanone 3-hydroxylase or 2OG-Fe(II) oxygenase containing protein) to attempt to make larger Jatropha seeds. We already made some transgenic Jatropha. Here we also discuss an improved method of Agrobacterium-mediated transformation to increase seed growth efficiency. We used Gamborg’B5 medium containing 2% sucrose and 250 mg/l active charcoal to improve the condition for root induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH et al (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer MJ, Birchler JA (2006) Organization of endoreduplicated chromosomes in the endosperm of Zea mays L. Chromosoma 115:383–394

    Article  PubMed  Google Scholar 

  • Bennett IJ, McDavid DAJ, McComb JA (2003) The influence of ammonium nitrate, pH and indole butyric acid on root induction and survival in soil of micropropagated Eucalyptus globulus. Biol Plant 47:355–360

    Article  CAS  Google Scholar 

  • Camellia NA, Thohirah LA, Abdullah NAP, Khidir OM (2009) Improvement on rooting quality of Jatropha curcas using Indole Butyric Acid (IBA). Res J Agric Biol Sci 5:338–343

    Google Scholar 

  • Chen LY, Shi DQ, Zhang WJ, Tang ZS, Liu J, Yang WC (2015) The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat Commun 6:6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D et al (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  • Forson FK, Oduro EK, Hammond-Donkoh E (2004) Performance of Jatropha oil blends in a diesel engine. Renew Energy 29:1135–1145

    Article  CAS  Google Scholar 

  • Francis D (2007) The plant cell cycle—15 years on. New Phytol 174:261–278

    Article  CAS  PubMed  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Czaja I, Lubenow H, Schell J, Walden R (1992) Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Paulsen LT, Nelson KE, Gaidos EJ, Nelson WC, Read TD et al (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han C et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa T, Nakawaza M, Kawashima M, Iizumi H, Kuroda H, Kondou Y et al (2006) The FOX hunting system: an alternative gain-of-function gene hunting technique. Plant J 48:974–985

    Article  CAS  PubMed  Google Scholar 

  • Kajikawa M, Morikawa K, Inoue M, Widyastuti U, Suharsono S, Yokota A et al (2012) Establishment of bispyribac selection protocols for Agrobacterium tumefaciens- and Agrobacterium rhizogenes-mediated transformation of the oil seed plant Jatropha curcas L. Plant Biotechnol 29:145–153

    Article  CAS  Google Scholar 

  • Kandler O, Hopf H (1982) Oligosaccharides based on sucrose (sucrosyl oligosaccharides). In: Loewus AF, Tanner W (eds) Plant carbohydrates 1. Intracellular carbohydrates, encyclopedia of plant physiology. Springer, Berlin, pp 348–383

    Google Scholar 

  • Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhaken R (2005) The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221:243–254

    Article  CAS  PubMed  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 18:137–153

    Article  Google Scholar 

  • Li C, Luo L, Fu Q, Niu L, Xu ZF (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biol 14:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Li H, Jiang H, Pan X, Wu G (2008a) Establishment of an Agrobacteriuim-mediated cotyledon disk transformation method for Jatropha curcas. Plant Cell Tiss Org Cult 92:173–181

    Article  CAS  Google Scholar 

  • Li S, Xiao X, Sun P, Wang F (2008b) Screening of genes regulated by cold shock in Shewanella piezotolerans WP3 and time course expression of cold-regulated genes. Arch Microbiol 189:549–556

    Article  CAS  PubMed  Google Scholar 

  • Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Martínez-Andújar C, Martin RC, Nonogaki H (2012) Seed traits and genes important for translational biology—highlights from recent discoveries. Plant Cell Physiol 53:5–15

    Article  PubMed  Google Scholar 

  • Methe BA, Nelson KE, Deming JW, Monen B, Melamud E, Zhang X et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K et al (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63:625–635

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, Kawashima M et al (2003) Activation tagging, a novel tool to dissect the functions of a gene family. Plant J 34:741–750

    Article  CAS  PubMed  Google Scholar 

  • Nagel W (1978) Endopolyploidy and polyteny in differentiation and evolution. Elsevier, Amsterdam

    Google Scholar 

  • Orlikowska T (1992) Effects of mineral composition and acidity of media, saccharose level, brand and quantity of agar on rooting of fruit rootstocks in vitro. Biol Plant 34:45–52

    Article  CAS  Google Scholar 

  • Pan J, Fu Q, Xu Z-F (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin. Afr J Biotechnol 9:6477–6481

    CAS  Google Scholar 

  • Ral JP, Bowerman AF, Li Z, Sirault X, Furbank R, Pritchard J et al (2012) Down-regulation of Glucan, Water-Dikinase activity in wheat endosperm increases vegetative biomass and yield. Plant Biotechnol J 10:871–882

    Article  CAS  PubMed  Google Scholar 

  • Rice Annotation Project (2007) Curated genome annotation of Oryza sativa ssp. Japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183

    Article  Google Scholar 

  • Rice Annotation Project (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36:D1028–D1033

    Article  Google Scholar 

  • Rice Full-Length cDNA Consortium (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Kondou Y, Akiyama K, Kurotani A, Higuchi M, Ichikawa T et al (2011) RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function. Plant Cell Physiol 52:265–273

    Article  CAS  PubMed  Google Scholar 

  • Salas JJ, Markham JE, Martínez-Force E, Garc’es R (2011) Characterization of sphingolipids from sunflower seeds with altered fatty acid composition. J Agric Food Chem 59:12486–12492

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Schneidereit A, Udvardi P, Hammes U, Gramann M, Dietrich P et al (2007) Arabidopsis INOSITOL TRANSPORTER2 mediates H+ symport of different inositol epimers and derivatives across the plasma membrane. Plant Physiol 145:1395–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriskandarajah S, Skirvin RM, Abu-Qaoud H (1990) The effect of some macronutrients on adventitious root development on scion apple cultivars in vitro. Plant Cell Tiss Org Cult 21:185–189

    Article  CAS  Google Scholar 

  • Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J et al (2012) A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. New Phytol 194:206–219

    Article  CAS  PubMed  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yu L, Yung K, Leung DYC, Sun F, Lim BL (2012) Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnol Biofuels 5:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward AJ, Bennet IJ, Pusswonge S (2006) The effect of nitrogen source and concentration, medium pH and buffering on in vitro shoot growth and rooting in Eucalyptus marginata. Sci Hort 110:208–213

    Article  CAS  Google Scholar 

  • Wu JX, Li J, Liu Z, Yin J, Chang ZY, Rong C et al (2015) The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. Plant J 81:767–780

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Liu P, Zhu C, Qu J, Wang X, Sun Y et al (2014) Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genom 14:757–766

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Kiriiwa (Department of Agriculture, Shizuoka University) for plant care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiko Motohashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Enoki, H. et al. (2017). Agrobacterium-Mediated Genetic Transformation for Larger Seed Size in Jatropha. In: Tsuchimoto, S. (eds) The Jatropha Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-49653-5_12

Download citation

Publish with us

Policies and ethics