Advertisement

Aircraft Taxi Route Choice in Case of Conflict Points Existence

  • Przemysław Podgórski
  • Jacek Skorupski
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 640)

Abstract

Aerodrome ground traffic management consists of many processes. Their complexity causes that telematic solutions intended to assist both the air traffic controller who coordinates taxiing and the pilot who executes them are introduced. An example of such a solution is A-SMGCS system. At the moment, intensive research on advanced system functions are carried out. They include smart taxi route choice taking into account the current traffic situation. The paper presents the model and the computer software tool implementing the dynamic taxi route choice module. It can be used in case of congestion in the aerodrome traffic described by the so-called conflict points. Presented taxi route choice system is integrated with the developed before system to identify conflict points. This allows intelligent traffic process management through the selection of an alternate taxi route. Such a solution could be implemented on the third level of A-SMGCS system.

Keywords

Aerodrome traffic management A-SMGCS system Aircraft taxi route choice 

References

  1. 1.
    Czarnecki, M., Skorupski, J.: Method for identification of conflict points in the intelligent system of an aircraft taxi route choice. Arch. Transp. Syst. Telematics 8(3), 9–14 (2015)Google Scholar
  2. 2.
    EUROCONTROL (European Organisation For The Safety Of Air Navigation): Definition of A-SMGCS Implementation Levels, edn. 1.2, Brussels (2010)Google Scholar
  3. 3.
    Jung, Y., et al.: Performance evaluation of SARDA: an individual aircraft-based advisory concept for surface management. Air Traffic Control Q. 22, 195–221 (2015)Google Scholar
  4. 4.
    Korzan, B.: Elementy teorii grafów i sieci. Metody i zastosowania, Wydawnictwa Naukowo-Techniczne, Warsaw (1978). (in Polish)Google Scholar
  5. 5.
    Łabuś, M.: Wpływ A-SMGCS na bezpieczeństwo operacji lotniskowych. Prace Naukowe Politechniki Warszawskiej. Transport 103, 147–155 (2014). (in Polish)Google Scholar
  6. 6.
    Ravizza, S., Atkin, J.A.D., Burke, E.K.: A more realistic approach for airport ground movement optimisation with stand holding. J. Sched. 17, 507–520 (2013)CrossRefMATHGoogle Scholar
  7. 7.
    Siergiejczyk, M., Siłkowska, J.: Analiza możliwości wykorzystania techniki multilateracji w dozorowaniu przestrzeni powietrznej. Prace Naukowe Politechniki Warszawskiej. Transport 102, 119–133 (2014)Google Scholar
  8. 8.
    Skorupski, J.: Airport traffic simulation using Petri nets. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 468–475. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41647-7_57 CrossRefGoogle Scholar
  9. 9.
    Skorupski, J.: The risk of an air accident as a result of a serious incident of the hybrid type. Reliab. Eng. Syst. Saf. 140, 37–52 (2015)CrossRefGoogle Scholar
  10. 10.
    Stroeve, S.H., Blom, H.A.P., (Bert) Bakker, G.J.: Systemic accident risk assessment in air traffic by Monte Carlo simulation. Saf. Sci. 47, 238–249 (2009)CrossRefGoogle Scholar
  11. 11.
    Tancredi, U., Accardo, D., Fasano, G., Renga, A., Rufino, G., Maresca, G.: An algorithm for managing aircraft movement on an airport surface. Algorithms 6, 494–511 (2013)CrossRefGoogle Scholar
  12. 12.
    Weiszer, M., Chen, J., Stewart, P.: A real-time active routing approach via a database for airport surface movement. Transp. Res. Part C Emerg. Technol. 58, 127–145 (2015)CrossRefGoogle Scholar
  13. 13.
    Westergaard, M., Kristensen, L.M.: The access/CPN framework: a tool for interacting with the CPN tools simulator. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 313–322. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02424-5_19 CrossRefGoogle Scholar
  14. 14.
    Wilke, S., Majumdar, A., Ochieng, W.Y.: Airport surface operations: a holistic framework for operations modeling and risk management. Saf. Sci. 63, 18–33 (2014)CrossRefGoogle Scholar
  15. 15.
    Wilke, S., Majumdar, A., Ochieng, W.Y.: The impact of airport characteristics on airport surface accidents and incidents. J. Saf. Res. 53, 63–75 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhu, X., Tang, X., Han, S.: Aircraft intersection collision conflict detection and resolution under the control of A-SMGCS. In: Proceedings of 2012 International Conference on Modelling, Identification and Control, ICMIC 2012, pp. 120–125 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Faculty of TransportWarsaw University of TechnologyWarsawPoland

Personalised recommendations