Advertisement

VISCERAL Anatomy Benchmarks for Organ Segmentation and Landmark Localization: Tasks and Results

  • Orcun Goksel
  • Antonio Foncubierta-Rodríguez
Open Access
Chapter

Abstract

While a growing number of benchmark studies compare the performance of algorithms for automated organ segmentation or lesion detection in images with restricted fields of view, few efforts have been made so far towards benchmarking these and related routines for the automated identification of bones, inner organs and relevant substructures visible in an image volume of the abdomen, the trunk or the whole body. The VISCERAL project has organized a series of benchmark editions designed for segmentation and landmark localization in medical images of multiple modalities, resolutions and fields of view acquired during daily clinical routine work. Participating groups are provided with data and computing resources on a cloud-based framework, where they can develop and test their algorithms, the submitted executables of which are then run and evaluated on unseen test data by the VISCERAL organizers.

Keywords

Landmark Localization Segmentation Task Landmark Detection Gold Corpus Organ Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 318068 (VISCERAL).

References

  1. 1.
    Dicente Cid Y, Jiménez del Toro OA, Depeursinge A, Müller H (2015) Efficient and fully automatic segmentation of the lungs in CT volumes. In: Goksel O, Jiménez del Toro OA, Foncubierta-Rodríguez A, Müller H (eds) CEUR workshop proceedings of the VISCERAL anatomy3 organ segmentation challenge at ISBI, New York, USAGoogle Scholar
  2. 2.
    Gass T, Szekely G, Goksel O (2014) Multi-atlas segmentation and landmark localization in images with large field of view. In: Menze B, Langs G, Montillo A, Kelm M, Müller H, Zhang S, Cai WT, Metaxas D (eds) MCV 2014. LNCS, vol 8848. Springer, Cham, pp 171–180. doi: 10.1007/978-3-319-13972-2_16
  3. 3.
    Goksel O, Gass T, Szekely G (2014) Segmentation and landmark localization based on multiple atlases. In: Goksel O (ed) CEUR workshop proceedings of the VISCERAL challenge at ISBI, Beijing, China, pp 37–43Google Scholar
  4. 4.
    He B, Huang C, Jia F (2015) Fully automatic multi-organ segmentation based on multi-boost learning and statistical shape model search. In: Goksel O, Jiménez del Toro OA, Foncubierta-Rodríguez A, Müller H (eds) CEUR workshop proceedings of the VISCERAL anatomy3 organ segmentation challenge at ISBI, New York, USAGoogle Scholar
  5. 5.
    Heinrich MP, Maier O, Handels H (2015) Multi-modal multi-atlas segmentation using discrete optimisation and self-similarities. In: Goksel O, Jiménez del Toro OA, Foncubierta-Rodríguez A, Müller H (eds) CEUR workshop proceedings of the VISCERAL anatomy3 organ segmentation challenge at ISBI, New York, USAGoogle Scholar
  6. 6.
    Huang C, Li X, Jia F (2014) Automatic liver segmentation using multiple prior knowledge models and free-form deformation. In: Goksel O (ed) CEUR workshop proceedings of the VISCERAL challenge at ISBI, Beijing, China, pp 22–24Google Scholar
  7. 7.
    Jiménez del Toro OA, Müller H (2014) Hierarchic multi–atlas based segmentation for anatomical structures: evaluation in the VISCERAL anatomy benchmarks. In: Menze B, Langs G, Montillo A, Kelm M, Müller H, Zhang S, Cai WT, Metaxas D (eds) MCV 2014. LNCS, vol 8848. Springer, Cham, pp 189–200. doi: 10.1007/978-3-319-13972-2_18
  8. 8.
    Jiménez del Toro OA, Müller H (2014) Hierarchical multi-structure segmentation guided by anatomical correlations. In: Goksel O (ed) CEUR workshop proceedings of the VISCERAL challenge at ISBI, Beijing, China, pp 32–36Google Scholar
  9. 9.
    Jiménez del Toro OA, Dicente Cid Y, Depeursinge A, Müller H (2015) Hierarchic anatomical structure segmentation guided by spatial correlations (anatseg-gspac): VISCERAL anatomy3. In: Goksel O, Jiménez del Toro OA, Foncubierta-Rodríguez A, Müller H (eds) CEUR workshop proceedings of the VISCERAL anatomy3 organ segmentation challenge at ISBI, New York, USAGoogle Scholar
  10. 10.
    Jiménez del Toro OA, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, FoncubiertaRodríguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze B, Fernandez TS, Schaer R, Walley A, Weber M, Cid YD, Gass T, Heinrich M, Jia F, Kahl F, Kechichian R, Mai D, Spanier AB, Vincent G, Wang C, Wyeth D, Hanbury A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imaging 35(11):2459–2475CrossRefGoogle Scholar
  11. 11.
    Kahl F, Alvén J, Enqvist O, Fejne F, Ulén J, Fredriksson J, Landgren M, Larsson V (2015) Good features for reliable registration in multi-atlas segmentation. In: Goksel O, Jiménez del Toro OA, Foncubierta-Rodríguez A, Müller H (eds) CEUR workshop proceedings of the VISCERAL anatomy3 organ segmentation challenge at ISBI, New York, USAGoogle Scholar
  12. 12.
    Kéchichian R, Valette S, Sdika M, Desvignes M (2014) Automatic 3D multiorgan segmentation via clustering and graph cut using spatial relations and hierarchically-registered atlases. In: Menze B, Langs G, Montillo A, Kelm M, Müller H, Zhang S, Cai WT, Metaxas D (eds) MCV 2014. LNCS, vol 8848. Springer, Cham, pp 201–209. doi: 10.1007/978-3-319-13972-2_19
  13. 13.
    Li X, Huang C, Jia F, Li Z, Fang C, Fan Y (2014) Automatic Liver Segmentation Using Statistical Prior Models and Free-form Deformation. In: Menze B, Langs G, Montillo A, Kelm M, Müller H, Zhang S, Cai WT, Metaxas D (eds) MCV 2014. LNCS, vol 8848. Springer, Cham, pp 181–188. doi: 10.1007/978-3-319-13972-2_17
  14. 14.
    Spanier AB, Joskowicz L (2014) Rule-based ventral cavity multi-organ automatic segmentation in CT scans. In: Goksel O (ed) CEUR workshop proceedings of the VISCERAL challenge at ISBI, Beijing, China, pp 16–21Google Scholar
  15. 15.
    Spanier AB, Joskowicz L (2014) Rule-based ventral cavity multi-organ automatic segmentation in CT scans. In: Menze B, Langs G, Montillo A, Kelm M, Müller H, Zhang S, Cai WT, Metaxas D (eds) MCV 2014. LNCS, vol 8848. Springer, Cham, pp 163–170. doi: 10.1007/978-3-319-13972-2_15
  16. 16.
    Wang C, Smedby O (2014) Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. In: Goksel O (ed) CEUR workshop proceedings of the VISCERAL challenge at ISBI, Beijing, China, pp 25–31Google Scholar

Copyright information

© The Author(s) 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

Authors and Affiliations

  1. 1.Computer Vision LaboratorySwiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland

Personalised recommendations