Multiatlas Segmentation Using Robust Feature-Based Registration

  • Frida Fejne
  • Matilda Landgren
  • Jennifer Alvén
  • Johannes Ulén
  • Johan Fredriksson
  • Viktor Larsson
  • Olof Enqvist
  • Fredrik Kahl
Open Access


This paper presents a pipeline which uses a multiatlas approach for multiorgan segmentation in whole-body CT images. In order to obtain accurate registrations between the target and the atlas images, we develop an adapted feature-based method which uses organ-specific features. These features are learnt during an offline preprocessing step, and thus, the algorithm still benefits from the speed of feature-based registration methods. These feature sets are then used to obtain pairwise non-rigid transformations using RANSAC followed by a thin-plate spline refinement or NiftyReg. The fusion of the transferred atlas labels is performed using a random forest classifier, and finally, the segmentation is obtained using graph cuts with a Potts model as interaction term. Our pipeline was evaluated on 20 organs in 10 whole-body CT images at the VISCERAL Anatomy Challenge, in conjunction with the International Symposium on Biomedical Imaging, Brooklyn, New York, in April 2015. It performed best on majority of the organs, with respect to the Dice index.


  1. 1.
    Alvén J, Norlén A, Enqvist O, Kahl F (2016) Überatlas: fast and robust registration for multi-atlas segmentation. Pattern Recognit Lett. doi:10.1016/j.patrec.2016.05.001
  2. 2.
    Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239CrossRefGoogle Scholar
  3. 3.
    Candemir S, Jaeger S, Palaniappan K, Musco J, Singh R, Xue Z, Karargyris A, Antani S, Thoma G, McDonald C (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33(2):577–590CrossRefGoogle Scholar
  4. 4.
    Chu C, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi Y, Nimura Y, Rueckert D, Mori K (2013) Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI 2013. LNCS, vol 8150. Springer, Heidelberg, pp 165–172. doi:10.1007/978-3-642-40763-5_21
  5. 5.
    Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 44–51Google Scholar
  6. 6.
    Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, Benali H, Garnero L, Colliot O (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from adni. Hippocampus 19(6):579–587CrossRefGoogle Scholar
  7. 7.
    Criminisi A, Shotton J, Konukoglu E (2011) Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends\(\textregistered \) Comput Graph Vis 7:81–227Google Scholar
  8. 8.
    Eberly D (2008) Distance between point and triangle in 3D. Geometric Tools, LLC.
  9. 9.
    Han X (2013) Learning-boosted label fusion for multi-atlas auto-segmentation. In: Wu G, Zhang D, Shen D, Yan P, Suzuki K, Wang F (eds) MLMI 2013. LNCS, vol 8184. Springer, Cham, pp 17–24. doi:10.1007/978-3-319-02267-3_3
  10. 10.
    Han X, Hoogeman MS, Levendag PC, Hibbard LS, Teguh DN, Voet P, Cowen AC, Wolf TK (2008) Atlas-based auto-segmentation of head and neck CT images. In: Metaxas D, Axel L, Fichtinger G, Székely G (eds) MICCAI 2008. LNCS, vol 5242. Springer, Heidelberg, pp 434–441. doi:10.1007/978-3-540-85990-1_52
  11. 11.
    Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1):115–126CrossRefGoogle Scholar
  12. 12.
    Heckemann RA, Keihaninejad S, Aljabar P, Rueckert D, Hajnal JV, Hammers A (2010) Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 51(1):221–227CrossRefGoogle Scholar
  13. 13.
    Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219CrossRefGoogle Scholar
  14. 14.
    Jamriška O, Sýkora D, Hornung A (2012) Cache-efficient graph cuts on structured grids. In: IEEE conference on computer vision and pattern recognition, pp 3673–3680Google Scholar
  15. 15.
    Jiménez-del-Toro OA, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I, Foncubierta-Rodríguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze B, Fernandez TS, Schaer R, Walleyo A, Weber M, Cid YD, Gass T, Heinrich M, Jia F, Kahl F, Kechichian R, Mai D, Spanier AB, Vincent G, Wang C, Wyeth D, Hanbury A (2016) Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans Med Imaging 35(11):2459–2475Google Scholar
  16. 16.
    Khalifa F, Beache G, Gimel’farb G, Suri J, El-Baz A (2011) State-of-the-art medical image registration methodologies: a survey. In: El-Baz AS, Rajendra Acharya U, Mirmehdi M, Suri JS (eds) Multi modality state-of-the-art medical image segmentation and registration methodologies. Springer, Heidelberg, pp 235–280Google Scholar
  17. 17.
    Kirisli HA, Schaap M, Klein S, Neefjes LA, Weustink AC, van Walsum T, Niessen WJ (2010) Fully automatic cardiac segmentation from 3D CTA data: a multi-atlas based approach. In: SPIE medical imaging, San Diego, USAGoogle Scholar
  18. 18.
    Klein A, Mensh B, Ghosh S, Tourville J, Hirsch J (2005) Mindboggle: automated brain labeling with multiple atlases. BMC Med Imaging 5(1):7CrossRefGoogle Scholar
  19. 19.
    Kolmogorov V, Boykov Y (2005) What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: IEEE international conference on computer vision, vol 1, pp 564–571Google Scholar
  20. 20.
    Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26(2):147–159CrossRefGoogle Scholar
  21. 21.
    Kurkure U, Le Y, Ju T, Carson J, Paragios N, Kakadiaris I (2011) Subdivision-based deformable model for geometric atlas fitting. In: IEEE international conference on computer vision, Barcelona, SpainGoogle Scholar
  22. 22.
    Lee JG, Gumus S, Moon CH, Kwoh CK, Bae KT (2014) Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method. Med Phys 41(9)Google Scholar
  23. 23.
    Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2015) Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med Image Anal 26(1):1–18CrossRefGoogle Scholar
  24. 24.
    Ourselin S, Roche A, Subsol G, Pennec X, Ayache N (2001) Reconstructing a 3D structure from serial histological sections. Image Vis Comput 19(1–2):25–31CrossRefGoogle Scholar
  25. 25.
    Pekar V, McNutt TR, Kaus MR (2004) Automated model-based organ delineation for radiotherapy planning in prostatic region. Int J Radiat Oncol Biol Phys 60(3):973–980CrossRefGoogle Scholar
  26. 26.
    Rohlfing T, Brandt R, Menzel R, Maurer CR Jr (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4):1428–1442CrossRefGoogle Scholar
  27. 27.
    Sanroma G, Wu G, Gao Y, Shen D (2014) Learning-based atlas selection for multiple-atlas segmentation. In: IEEE conference on computer vision and pattern recognition, Columbus, USAGoogle Scholar
  28. 28.
    Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190CrossRefGoogle Scholar
  29. 29.
    Svärm L, Enqvist O, Kahl F, Oskarsson M (2015) Improving robustness for inter-subject medical image registration using a feature-based approach. In: International symposium on biomedical imagingGoogle Scholar
  30. 30.
    Taylor R, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans Robot Autom 19(5):765–781CrossRefGoogle Scholar
  31. 31.
    van der Lijn F, den Heijer T, Breteler MM, Niessen WJ (2008) Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage 43(4):708–720CrossRefGoogle Scholar
  32. 32.
    Wang H, Suh J, Dass SR, Pluta J, Craige C, Yushkevich P (2013) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623CrossRefGoogle Scholar
  33. 33.
    Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SGF, Yan J, Lee PKM, Chow B, Liu NX, Xia JJ, Shen D (2014) Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization. Med Phys 41(4):043503CrossRefGoogle Scholar
  34. 34.
    Warfield S, Zou K, Wells W (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 27(3):903–921CrossRefGoogle Scholar
  35. 35.
    Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723–1730CrossRefGoogle Scholar
  36. 36.
    Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA (2015) Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med Image Anal 24(1):18–27CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the work’s Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

Authors and Affiliations

  • Frida Fejne
    • 1
  • Matilda Landgren
    • 2
  • Jennifer Alvén
    • 1
  • Johannes Ulén
    • 1
  • Johan Fredriksson
    • 2
  • Viktor Larsson
    • 2
  • Olof Enqvist
    • 1
  • Fredrik Kahl
    • 1
    • 2
  1. 1.Department of Signals and SystemsChalmers University of TechnologyGothenburgSweden
  2. 2.Centre for Mathematical SciencesLund UniversityLundSweden

Personalised recommendations