Microbial Fuel Cells: Types and Applications

  • Ravinder Kumar
  • Lakhveer SinghEmail author
  • A. W. Zularisam


Microbial fuel cells (MFCs) are bioelectrochemical devices that convert the chemical energy present in organic or inorganic compounds into electric current by using microorganisms as the catalysts. MFCs are of different types; however, the basic designs used in the laboratories for its applications include double-chamber MFC, single-chamber MFC, upflow MFC and stacked MFC. Moreover, some other designs have also been used for the studies. The type of electrode materials and proton exchange membrane (PEM) used in MFCs has most significant role for its outcomes for different applications such as bioelectricity generation, wastewater treatment, bioremediation of toxic compounds, biohydrogen production and biosensors. Furthermore, MFCs are operated at the optimized parameters such as thermophilic temperatures, neutral pH, etc. to obtain more significant results for respective application. This chapter explores the various types of MFCs, the operational parameters to improve its performance and the most studied applications of the MFCs.


Microbial fuel cells Catalysts Wastewater treatment Bioelectricity generation Biosensors Proton exchange membrane 



The authors are thankful to the Universiti Malaysia Pahang Research Scheme (Grant No. RDU-140379) for financial support.


  1. Aelterman P, Rabaey K, Pham TH, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394. doi: 10.1021/es0525511 CrossRefPubMedGoogle Scholar
  2. Alatraktchi FA, Zhang Y, Angelidaki I (2014) Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222. doi: 10.1016/j.apenergy.2013.11.058 CrossRefGoogle Scholar
  3. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243. doi: 10.1111/j.1574-6976.2001.tb00576.x CrossRefPubMedGoogle Scholar
  4. Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904. doi: 10.1016/j.elecom.2005.06.006 CrossRefGoogle Scholar
  5. Bermek H, Catal T, Akan SS, Ulutas MS, Kumru M, Ozguven M, Liu H, Ozcelik H, Akarsubasi AT (2014) Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells. World J Microbiol Biotechnol 30:1177–1185. doi: 10.1007/s11274-013-1541-8 CrossRefPubMedGoogle Scholar
  6. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borole AP, Reguera G, Ringeisen B, Wang ZW, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energy Environ Sci 4:4813–4834. doi: 10.1039/C1EE02511B CrossRefGoogle Scholar
  8. Brutinel E, Gralnick J (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48. doi: 10.1007/s00253-011-3653-0 CrossRefPubMedGoogle Scholar
  9. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells. Nat Biotechnol 21:1229–1232. doi: 10.1038/nbt867 CrossRefPubMedGoogle Scholar
  10. Cheng S, Liu H, Logan BE (2006a) Increased performance of single chamber microbial fuel cells using an improved cathode structure. Electrochem Commun 8:489–494. doi: 10.1016/j.elecom.2006.01.010 CrossRefGoogle Scholar
  11. Cheng S, Liu H, Logan BE (2006b) Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 40:2426–2432. doi: 10.1021/es051652w CrossRefPubMedGoogle Scholar
  12. Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosen Bioelect 18:327–334. doi: 10.1016/S0956-5663(02)00110-0 CrossRefGoogle Scholar
  13. He Z, Wagner N, Minteer SD, Angenent LT (2006) The upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217. doi: 10.1021/es060394f CrossRefPubMedGoogle Scholar
  14. Heilmann J, Logan BE (2006) Production of electricity from proteins using a single chamber microbial fuel cell. Water Environ Res 78:531–537. doi: 10.2175/106143005X73046 CrossRefPubMedGoogle Scholar
  15. Huang L, Chai X, Quan X, Logan BE, Chen G (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174. doi: 10.1016/j.biortech.2012.01.171 CrossRefPubMedGoogle Scholar
  16. Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR (2010) Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. Environ Microbiol Rep 3:211–217. doi: 10.1111/j.1758-2229.2010.00210.x CrossRefPubMedGoogle Scholar
  17. Jafary T, Ghoreyshi AA, Najafpour G, Fatemi S, Rahimnejad M (2013) Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. Int J Energy Res 37:1539–1549. doi: 10.1002/er.2994 CrossRefGoogle Scholar
  18. Jiang X, Hu J, Lieber AM, Jackan CS, Biffinger JC, Fitzgerald LA, Ringeisen BR, Lieber CM (2014) Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett 14:6737–6742. doi: 10.1021/nl503668q CrossRefPubMedGoogle Scholar
  19. Kumar R, Singh L, Wahid ZA (2016) Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev 56:1322–1336. doi: 10.1016/j.rser.2015.12.029 CrossRefGoogle Scholar
  20. Kumar R, Singh L, Wahid ZA, Fadhil M (2015) Exoelectrogens in microbial fuel cells towards bioelectricity generation: a review. Int Journal Energy Res 39:1048–1067. doi: 10.1002/er.3305 CrossRefGoogle Scholar
  21. Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285. doi: 10.1021/es034923g CrossRefPubMedGoogle Scholar
  22. Liu X, Huang Y, Sun X, Sheng G, Zhao F, Wang S, Yu H (2014) Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. Appl Mater Interf 6:8158–8164. doi: 10.1021/am500624k CrossRefGoogle Scholar
  23. Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160–167. doi: 10.1021/es040468s CrossRefGoogle Scholar
  24. Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952. doi: 10.1016/j.watres.2004.11.019 CrossRefPubMedGoogle Scholar
  25. Logan BE, Regan JM (2006) Microbial fuel cells—challenges and applications. Environ Sci Technol 40:5172–5180. doi: 10.1021/es0627592 CrossRefPubMedGoogle Scholar
  26. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814. doi: 10.1021/es0491026 CrossRefPubMedGoogle Scholar
  27. Niessen J, SchroÈder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation-a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958. doi: 10.1016/j.elecom.2004.07.010 CrossRefGoogle Scholar
  28. Oh S, Kim J, Premier G, Lee T, Changwon K, Sloan W (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871–881. doi: 10.1016/j.biotechadv.2010.07.008 CrossRefPubMedGoogle Scholar
  29. Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, Izallalen M, Mester T (2013) U (VI) reduction by a diversity of outer surface c-type cytochromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369–6374. doi: 10.1128/AEM.02551-13 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355. doi: 10.1002/bit.10501 CrossRefPubMedGoogle Scholar
  31. Patil SA, Harnisch F, Koch C, Hubschmann T, Fetzer I, Carmona-Martinez AA, Muller S, Schroder U (2011) Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresour Technol 102:9683–9690. doi: 10.1016/j.biortech.2011.07.087 CrossRefPubMedGoogle Scholar
  32. Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82. doi: 10.1016/j.femsle.2004.01.041 CrossRefPubMedGoogle Scholar
  33. Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408. doi: 10.1021/es048563o CrossRefPubMedGoogle Scholar
  34. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382. doi: 10.1128/AEM.70.9.5373-5382.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Raghavulu SV, Annie Modestra J, Amulya K, Reddy CN, Venkata Mohan S (2013) Relative effect of bioaugmentation with electrochemically active and nonactive bacteria on bioelectrogenesis in microbial fuel cell. Bioresour Technol 146:696–703. doi: 10.1016/j.biortech.2013.07.097 CrossRefPubMedGoogle Scholar
  36. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101. doi: 10.1038/nature03661 CrossRefPubMedGoogle Scholar
  37. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671. doi: 10.1021/es048386r CrossRefPubMedGoogle Scholar
  38. Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, Biffinger JC, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634. doi: 10.1021/es052254w CrossRefPubMedGoogle Scholar
  39. Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042. doi: 10.1021/es0480668 CrossRefPubMedGoogle Scholar
  40. Shen HB, Yong XY, Chen YL, Liao ZH, Si RW, Zhou J, Zheng T (2014) Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour Technol 167:490–494. doi: 10.1016/j.biortech.2014.05.093 CrossRefPubMedGoogle Scholar
  41. Sun M, Reible DD, Lowry GV, Gregory KB (2012) Effect of applied voltage, initial concentration, and natural organic matter on sequential reduction/oxidation of nitrobenzene by graphite electrodes. Environ Sci Technol 46:6174–6181. doi: 10.1021/es300048y CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tang J, Chen S, Yuan Y, Cai X, Zhou S (2015) In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Biosens Bioelectron 71:387–395. doi: 10.1016/j.bios.2015.04.074 CrossRefPubMedGoogle Scholar
  43. Venkata Mohan S, Velvizhi G, Modestra JA, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797. doi: 10.1016/j.rser.2014.07.109 CrossRefGoogle Scholar
  44. Wang Y, Wang A, Zhou A, Liu W, Huang L, Xu M, Tao H (2014) Electrode as sole electrons donor for enhancing decolorization of azo dye by an isolated WYZ-2. Bioresour Technol 152:530–533. doi: 10.1016/j.biortech.2013.11.001 CrossRefPubMedGoogle Scholar
  45. Yang Y, Ding Y, Hu Y, Cao B, Rice SA, Kjelleberg S, Song H (2015) Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 7:815–823. doi: 10.1021/sb500331x CrossRefGoogle Scholar
  46. Yong XY, Feng J, Chen YL, Shi DY, Xu XY, Zhou J, Wang SY, Xu S, Yong YC, Sun YM, Shi CL, OuYang PK, Zheng T (2014) Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosens Bioelect 56:19–25. doi: 10.1016/j.bios.2013.12.058 CrossRefGoogle Scholar
  47. Zhang Y, Sun J, Hu Y, Li S, Xu Q (2012) Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int J Hydrogen Energy 37:16935–16942. doi: 10.1016/j.ijhydene.2012.08.064 CrossRefGoogle Scholar
  48. Zhou M, Wang H, Hassett JD, Gu T (2013) Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J ChemTechnol Biotechnol 88:508–518. doi: 10.1002/jctb.4004 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ravinder Kumar
    • 1
  • Lakhveer Singh
    • 1
    Email author
  • A. W. Zularisam
    • 1
  1. 1.Faculty of Engineering TechnologyUniversiti Malaysia Pahang (UMP)KuantanMalaysia

Personalised recommendations