Advertisement

Interrelationships of Service Orchestrations

  • Victor W. ChuEmail author
  • Raymond K. Wong
  • Fang Chen
  • Chi-Hung Chi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10086)

Abstract

Despite topic models have been successfully used to reveal hidden orchestration patterns from service logs, the potential uses of their interrelationships have yet to be explored. In particular, the popularity of an orchestration pattern is a leading indicator of other orchestrations in many situations. Indeed, the research in capturing relationships by induced networks has been active in some areas, such as in spatial problems. In this paper, we propose a structure discovery process to reveal relationship networks among service orchestrations. In practice, more robust business logic can be formulated by having a good understanding of these relationships that leads to efficiency gains. Our proposed interrelationship discovery process is performed by a set of optimizations with adaptive regularization. These features make our proposed solution efficient and self-adjusted to the dynamics in service environments. The results from our extensive experiments on service consumption logs confirm the effectiveness of our proposed solution.

Keywords

Service orchestration Interrelationship Bayesian networks 

References

  1. 1.
    Bhiri, S., Gaaloul, W., Godart, C.: Mining and improving composite web services recovery mechanisms. Int. J. Web Serv. Res. (IJWSR) 5(2), 23–48 (2008)CrossRefGoogle Scholar
  2. 2.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)CrossRefGoogle Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Borwein, J.M., Lewis, A.S.: Convex analysis and nonlinear optimization: theory and examples, vol. 3. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Chu, V.W., Wong, R.K., Chen, F., Chi, C.H.: Web service recommendations based on time-aware Bayesian networks. In: 2015 IEEE International Congress on Big Data (BigData Congress), pp. 359–366. IEEE (2015)Google Scholar
  6. 6.
    Chu, V.W., Wong, R.K., Chen, F., Fong, S., Hung, P.C.: Self-regularized causal structure discovery for trajectory-based networks. J. Comput. Syst. Sci. 82(4), 594–609 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chu, V.W., Wong, R.K., Chi, C.H., Hung, P.C.: Web service orchestration topic mining. In: 2014 IEEE International Conference on Web Services (ICWS), pp. 225–232. IEEE (2014)Google Scholar
  8. 8.
    Dondelinger, F., Lèbre, S., Husmeier, D.: Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach. Learn. 90(2), 191–230 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fuchs, J.J.: Recovery of exact sparse representations in the presence of bounded noise. Inf. Theor. IEEE Trans. 51(10), 3601–3608 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gaaloul, W., Baïna, K., Godart, C.: Log-based mining techniques applied to web service composition reengineering. Serv. Oriented Comput. Appl. 2(2–3), 93–110 (2008)CrossRefGoogle Scholar
  12. 12.
    Garrett, J.J.: Ajax: A new approach to web applications, 7(3) (2007). http://adaptivepath.com/ideas/essays/archives/000385.php
  13. 13.
    Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian networks. In: NIPS, pp. 682–690 (2009)Google Scholar
  14. 14.
    Grzegorczyk, M., Husmeier, D.: Non-homogeneous dynamic Bayesian networks for continuous data. Mach. Learn. 83(3), 355–419 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    He, H., Garcia, E.A.: Learning from imbalanced data. Knowl. Data Eng. IEEE Trans. 21(9), 1263–1284 (2009)CrossRefGoogle Scholar
  16. 16.
    Kapuruge, M., Han, J., Colman, A.: Representing service-relationships as first class entities in service orchestrations. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) Web Information Systems Engineering - WISE 2012. LNCS, vol. 7651, pp. 257–270. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics (NRL) 52(1), 7–21 (2005)CrossRefGoogle Scholar
  18. 18.
    Liang, Q.A., Chung, J.Y., Miller, S., Ouyang, Y.: Service pattern discovery of web service mining in web service registry-repository. In: IEEE International Conference on e-Business Engineering, 2006. ICEBE 2006, pp. 286–293. IEEE (2006)Google Scholar
  19. 19.
    Madsen, H., Thyregod, P.: Introduction to General and Generalized Linear Models. CRC Press, Boca Raton (2010)Google Scholar
  20. 20.
    Mairal, J., Yu, B.: Complexity analysis of the lasso regularization path. In: ICML (2012)Google Scholar
  21. 21.
    Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: NIPS, pp. 121–128 (2008)Google Scholar
  22. 22.
    Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis, UC Berkeley, Computer Science Division (2002)Google Scholar
  23. 23.
    Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52 (2003)CrossRefGoogle Scholar
  24. 24.
    Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic models. In: ICWSM (2010)Google Scholar
  25. 25.
    Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. vol. 1, pp. 248–256. Association for Computational Linguistics (2009)Google Scholar
  26. 26.
    Ramage, D., Manning, C.D., Dumais, S.: Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 457–465. ACM (2011)Google Scholar
  27. 27.
    Robinson, J.W., Hartemink, A.J.: Non-stationary dynamic Bayesian networks. In: NIPS, pp. 1369–1376 (2008)Google Scholar
  28. 28.
    Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian networks. J. Mach. Learn. Res. 11, 3647–3680 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Schmidt, M., Niculescu-Mizil, A., Murphy, K., et al.: Learning graphical model structure using L1-regularization paths. AAAI 7, 1278–1283 (2007)Google Scholar
  30. 30.
    Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic Bayesian networks. In: NIPS, pp. 1732–1740 (2009)Google Scholar
  31. 31.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wang, Z., Kuruoglu, E.E., Yang, X., Xu, Y., Huang, T.S.: Time varying dynamic Bayesian network for nonstationary events modeling and online inference. Signal Proc. IEEE Trans. 59(4), 1553–1568 (2011)CrossRefGoogle Scholar
  33. 33.
    Wetzstein, B., Danylevych, O., Leymann, F., Bitsaki, M., Nikolaou, C., van den Heuvel, W.J., Papazoglou, M.: Towards monitoring of key performance indicators across partners in service networks. In: Workshop on Service Monitoring, Adaptation and Beyond, p. 7 (2009)Google Scholar
  34. 34.
    Wetzstein, B., Karastoyanova, D., Leymann, F.: Towards management of sla-aware business processes based on key performance indicators. In: 9th Workshop on Business Process Modeling, Development and Support (BPMDS 2008) (2008)Google Scholar
  35. 35.
    Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1445–1456. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  36. 36.
    Zdun, U., Voelter, M., Kircher, M.: Design and implementation of an asynchronous invocation framework for web services. In: Jeckle, M., Zhang, L.-J. (eds.) ICWS-Europe 2003. LNCS, vol. 2853, pp. 64–78. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39872-1_6 CrossRefGoogle Scholar
  37. 37.
    Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20161-5_34 CrossRefGoogle Scholar
  38. 38.
    Zheng, G., Bouguettaya, A.: Service mining on the web. Services Comput. IEEE Trans. 2(1), 65–78 (2009)CrossRefGoogle Scholar
  39. 39.
    Zhu, J., Ahmed, A., Xing, E.P.: Medlda: maximum margin supervised topic models. J. Mach. Learn. Res. 13(1), 2237–2278 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Victor W. Chu
    • 1
    • 2
    Email author
  • Raymond K. Wong
    • 1
    • 2
  • Fang Chen
    • 2
  • Chi-Hung Chi
    • 3
  1. 1.University of New South WalesSydneyAustralia
  2. 2.Data61, CSIROSydneyAustralia
  3. 3.Data61, CSIROHobartAustralia

Personalised recommendations