Advertisement

Confidence-Weighted Bipartite Ranking

  • Majdi KhalidEmail author
  • Indrakshi Ray
  • Hamidreza Chitsaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10086)

Abstract

Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning. Unlike kernelized ranker, linear ranker is more scalable learning algorithm. The existing linear online bipartite ranking algorithms lack either handling non-separable data or constructing adaptive large margin. These limitations yield unreliable bipartite ranking performance. In this work, we propose a linear online confidence-weighted bipartite ranking algorithm (CBR) that adopts soft confidence-weighted learning. The proposed algorithm leverages the same properties of soft confidence-weighted learning in a framework for bipartite ranking. We also develop a diagonal variation of the proposed confidence-weighted bipartite ranking algorithm to deal with high-dimensional data by maintaining only the diagonal elements of the covariance matrix. We empirically evaluate the effectiveness of the proposed algorithms on several benchmark and high-dimensional datasets. The experimental results validate the reliability of the proposed algorithms. The results also show that our algorithms outperform or are at least comparable to the competing online AUC maximization methods.

Keywords

Online ranking Imbalanced learning AUC maximization 

References

  1. 1.
    Agarwal, S.: A study of the bipartite ranking problem in machine learning (2005)Google Scholar
  2. 2.
    Cai, D., He, X., Han, J.: Locally consistent concept factorization for document clustering. IEEE Trans. Knowl. Data Eng. 23(6), 902–913 (2011)CrossRefGoogle Scholar
  3. 3.
    Cavallanti, G., Cesa-Bianchi, N., Gentile, C.: Tracking the best hyperplane with a simple budget perceptron. Mach. Learn. 69(2–3), 143–167 (2007)CrossRefGoogle Scholar
  4. 4.
    Cesa-Bianchi, N., Conconi, A., Gentile, C.: A second-order perceptron algorithm. SIAM J. Comput. 34(3), 640–668 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with svms. Inf. Retrieval 13(3), 201–215 (2010)CrossRefGoogle Scholar
  6. 6.
    Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. In: Advances in Neural Information Processing Systems 16(16), pp. 313–320 (2004)Google Scholar
  7. 7.
    Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Crammer, K., Dredze, M., Kulesza, A.: Multi-class confidence weighted algorithms. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 2, pp. 496–504. Association for Computational Linguistics (2009)Google Scholar
  9. 9.
    Crammer, K., Dredze, M., Pereira, F.: Confidence-weighted linear classification for text categorization. J. Mach. Learn. Res. 13(1), 1891–1926 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Crammer, K., Kulesza, A., Dredze, M.: Adaptive regularization of weight vectors. In: Advances in Neural Information Processing Systems, pp. 414–422 (2009)Google Scholar
  11. 11.
    Dekel, O., Shalev-Shwartz, S., Singer, Y.: The forgetron: a kernel-based perceptron on a budget. SIAM J. Comput. 37(5), 1342–1372 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ding, Y., Zhao, P., Hoi, S.C., Ong, Y.S.: An adaptive gradient method for online auc maximization. In: AAAI, pp. 2568–2574 (2015)Google Scholar
  13. 13.
    Dredze, M., Crammer, K., Pereira, F.: Confidence-weighted linear classification. In: Proceedings of the 25th International Conference on Machine Learning, pp. 264–271. ACM (2008)Google Scholar
  14. 14.
    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gao, W., Jin, R., Zhu, S., Zhou, Z.H.: One-pass auc optimization. In: ICML (3), pp. 906–914 (2013)Google Scholar
  16. 16.
    Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 143(1), 29–36 (1982)CrossRefGoogle Scholar
  17. 17.
    Hu, J., Yang, H., King, I., Lyu, M.R., So, A.M.C.: Kernelized online imbalanced learning with fixed budgets. In: AAAI, pp. 2666–2672 (2015)Google Scholar
  18. 18.
    Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 377–384. ACM (2005)Google Scholar
  19. 19.
    Joachims, T.: Training linear svms in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)Google Scholar
  20. 20.
    Kar, P., Sriperumbudur, B.K., Jain, P., Karnick, H.: On the generalization ability of online learning algorithms for pairwise loss functions. In: ICML (3), pp. 441–449 (2013)Google Scholar
  21. 21.
    Kotlowski, W., Dembczynski, K.J., Huellermeier, E.: Bipartite ranking through minimization of univariate loss. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 1113–1120 (2011)Google Scholar
  22. 22.
    Kuo, T.M., Lee, C.P., Lin, C.J.: Large-scale kernel ranksvm. In: SDM, pp. 812–820. SIAM (2014)Google Scholar
  23. 23.
    Lee, C.P., Lin, C.B.: Large-scale linear ranksvm. Neural Comput. 26(4), 781–817 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li, N., Jin, R., Zhou, Z.H.: Top rank optimization in linear time. In: Advances in Neural Information Processing Systems, pp. 1502–1510 (2014)Google Scholar
  25. 25.
    Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)CrossRefGoogle Scholar
  26. 26.
    Ma, J., Kulesza, A., Dredze, M., Crammer, K., Saul, L.K., Pereira, F.: Exploiting feature covariance in high-dimensional online learning. In: International Conference on Artificial Intelligence and Statistics, pp. 493–500 (2010)Google Scholar
  27. 27.
    Orabona, F., Crammer, K.: New adaptive algorithms for online classification. In: Advances in Neural Information Processing Systems, pp. 1840–1848 (2010)Google Scholar
  28. 28.
    Orabona, F., Keshet, J., Caputo, B.: Bounded kernel-based online learning. J. Mach. Learn. Res. 10, 2643–2666 (2009)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning optimal ranking with tensor factorization for tag recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 727–736. ACM (2009)Google Scholar
  30. 30.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)CrossRefGoogle Scholar
  31. 31.
    Sculley, D.: Large scale learning to rank. In: NIPS Workshop on Advances in Ranking, pp. 1–6 (2009)Google Scholar
  32. 32.
    Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wan, J., Wu, P., Hoi, S.C., Zhao, P., Gao, X., Wang, D., Zhang, Y., Li, J.: Online learning to rank for content-based image retrieval. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pp. 2284–2290 (2015)Google Scholar
  34. 34.
    Wang, J., Wan, J., Zhang, Y., Hoi, S.C.: Solar: Scalable online learning algorithms for rankingGoogle Scholar
  35. 35.
    Wang, J., Zhao, P., Hoi, S.C.: Exact soft confidence-weighted learning. In: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 121–128 (2012)Google Scholar
  36. 36.
    Wang, J., Zhao, P., Hoi, S.C., Jin, R.: Online feature selection and its applications. IEEE Trans. Knowl. Data Eng. 26(3), 698–710 (2014)CrossRefGoogle Scholar
  37. 37.
    Zhao, P., Jin, R., Yang, T., Hoi, S.C.: Online auc maximization. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 233–240 (2011)Google Scholar
  38. 38.
    Zinkevich, M.: Online convex programming and generalized infinitesimal gradient ascent (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Majdi Khalid
    • 1
    Email author
  • Indrakshi Ray
    • 1
  • Hamidreza Chitsaz
    • 1
  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations