Unsupervised Hypergraph Feature Selection with Low-Rank and Self-Representation Constraints

  • Wei He
  • Xiaofeng ZhuEmail author
  • Yonggang Li
  • Rongyao Hu
  • Yonghua Zhu
  • Shichao Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10086)


Unsupervised feature selection is designed to select a subset of informative features from unlabeled data to avoid the issue of ‘curse of dimensionality’ and thus achieving efficient calculation and storage. In this paper, we integrate the feature-level self-representation property, a low-rank constraint, a hypergraph regularizer, and a sparsity inducing regularizer (i.e., an \(\ell _{2,1}\)-norm regularizer) in a unified framework to conduct unsupervised feature selection. Specifically, we represent each feature by other features to rank the importance of features via the feature-level self-representation property. We then embed a low-rank constraint to consider the relations among features and a hypergarph regularizer to consider both the high-order relations and the local structure of the samples. We finally use an \(\ell _{2,1}\)-norm regularizer to result in low-sparsity to output informative features which satisfy the above constraints. The resulting feature selection model thus takes into account both the global structure of the samples (via the low-rank constraint) and the local structure of the data (via the hypergraph regularizer), rather than only considering each of them used in the previous studies. This enables the proposed model more robust than the previous models due to achieving the stable feature selection model. Experimental results on benchmark datasets showed that the proposed method effectively selected the most informative features by removing the adverse effect of redundant/nosiy features, compared to the state-of-the-art methods.


Low-rank representation Subspace learning Feature self-representation Hypergraph 



This work was supported in part by the China “1000-Plan” National Distinguished Professorship; the Nation Natural Science Foundation of China (Grants No: 61263035, 61573270 and 61672177), the China 973 Program (Grant No: 2013CB329404); the China Key Research Program (Grant No: 2016YFB1000905); the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011); the China Postdoctoral Science Foundation (Grant No: 2015M570837); the Innovation Project of Guangxi Graduate Education under grant YCSZ2016046; the Guangxi High Institutions’ Program of Introducing 100 High-Level Overseas Talents; the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; and the Guangxi “Bagui” Teams for Innovation and Research, and the project “Application and Research of Big Data Fusion in Inter-City Traffic Integration of The Xijiang River - Pearl River Economic Belt(da shu jv rong he zai xijiang zhujiang jing ji dai cheng ji jiao tong yi ti hua zhong de ying yong yu yan jiu)”.


  1. 1.
    Cai, X., Ding, C., Nie, F., Huang, H.: On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions. In: SIGKDD, pp. 1124–1132 (2013)Google Scholar
  2. 2.
    Cao, J., Wu, Z., Wu, J.: Scaling up cosine interesting pattern discovery: a depth-first method. Inf. Sci. 266(5), 31–46 (2014)CrossRefGoogle Scholar
  3. 3.
    Cheng, D., Zhang, S., Liu, X., Sun, K., Zong, M.: Feature selection by combining subspace learning with sparse representation. Multimedia Syst., 1–7 (2015)Google Scholar
  4. 4.
    Gao, L., Song, J., Nie, F., Yan, Y., Sebe, N., Tao Shen, H.: Optimal graph learning with partial tags and multiple features for image and video annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4371–4379 (2015)Google Scholar
  5. 5.
    Gao, L.L., Song, J., Shao, J., Zhu, X., Shen, H.T.: Zero-shot image categorization by image correlation exploration. In: ICMR, pp. 487–490 (2015)Google Scholar
  6. 6.
    Gheyas, I.A., Smith, L.S.: Feature subset selection in large dimensionality domains. Pattern Recogn. 43(1), 5–13 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gu, Q., Li, Z., Han, J.: Joint feature selection and subspace learning. IJCAI 22, 1294–1299 (2011)Google Scholar
  8. 8.
    He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 507–514 (2005)Google Scholar
  9. 9.
    Hou, C., Nie, F., Li, X., Yi, D., Wu, Y.: Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans. Cybern. 44(6), 793–804 (2013)Google Scholar
  10. 10.
    Hu, R., Zhu, X., Cheng, D., He, W., Yan, Y., Song, J., Zhang, S.: Graph self-representation method for unsupervised feature selection. Neurocomputing (2016)Google Scholar
  11. 11.
    Huang, Y., Liu, Q., Lv, F., Gong, Y., Metaxas, D.N.: Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1266–1273 (2011)CrossRefGoogle Scholar
  12. 12.
    Jie, C., Wu, Z., Wu, J., Hui, X.: Sail: summation-based incremental learning for information-theoretic text clustering. ieee trans. syst. man cybern. part b cybern. 43(2), 570–584 (2013). A Publication of the IEEE Systems Man & Cybernetics SocietyGoogle Scholar
  13. 13.
    Lewandowski, M., Makris, D., Velastin, S., Nebel, J.-C.: Structural Laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Trans. Cybern. 44(6), 936–949 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Softw. Eng. 35 (2013)Google Scholar
  15. 15.
    Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: CVPR, pp. 663–670 (2010)Google Scholar
  16. 16.
    Liu, R., Yang, N., Ding, X., Ma, L.: An unsupervised feature selection algorithm: Laplacian score combined with distance-based entropy measure. In: IITA, pp. 65–68 (2009)Google Scholar
  17. 17.
    Maugis, C., Celeux, G., Martin-Magniette, M.L.: Variable selection for clustering with gaussian mixture models. Biometrics 65(3), 701–709 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint \(\ell _{2,1}\)-norms minimization. In: NIPS, pp. 1813–1821 (2010)Google Scholar
  19. 19.
    Nie, F., Xiang, S., Jia, Y., Zhang, C., Yan, S.: Trace ratio criterion for feature selection. In: AAAI, pp. 671–676 (2008)Google Scholar
  20. 20.
    Peng, Y., Long, X., Lu, B.L.: Graph based semi-supervised learning via structure preserving low-rank representation. Neural Process. Lett. 41(3), 389–406 (2015)CrossRefGoogle Scholar
  21. 21.
    Qin, Y., Zhang, S., Zhu, X., Zhang, J., Zhang, C.: Semi-parametric optimization for missing data imputation. Appl. Intell. 27(1), 79–88 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Shi, X., Guo, Z., Lai, Z., Yang, Y., Bao, Z., Zhang, D.: A framework of joint graph embedding and sparse regression for dimensionality reduction. IEEE Trans. Image Process. 24(4), 1341–1355 (2015). A Publication of the IEEE Signal Processing SocietyMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sunzhong, L.V., Jiang, H., Zhao, L., Wang, D., Fan, M.: Manifold based fisher method for semi-supervised feature selection. In: FSKD, pp. 664–668 (2013)Google Scholar
  24. 24.
    Tabakhi, S., Moradi, P., Akhlaghian, F.: An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32, 112–123 (2014)CrossRefGoogle Scholar
  25. 25.
    Unler, A., Murat, A., Chinnam, R.B.: mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181(20), 4625–4641 (2011)CrossRefGoogle Scholar
  26. 26.
    Wang, D., Nie, F., Huang, H.: Unsupervised feature selection via unified trace ratio formulation and K-means clustering (TRACK). In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 306–321. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44845-8_20 Google Scholar
  27. 27.
    Wang, J.Y., Yao, J., Sun, Y.: Semi-supervised local-learning-based feature selection. In: IJCNN, pp. 1942–1948 (2014)Google Scholar
  28. 28.
    Wen, J., Lai, Z., Wong, W.K., Cui, J., Wan, M.: Optimal feature selection for robust classification via \(\ell _{2,1}\)-norms regularization. In: ICPR, pp. 517–521 (2014)Google Scholar
  29. 29.
    Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Syst. 22(3), 381–405 (2004)CrossRefGoogle Scholar
  30. 30.
    Wu, X., Zhang, S.: Synthesizing high-frequency rules from different data sources. IEEE Trans. Knowl. Data Eng. 15(2), 353–367 (2003)CrossRefGoogle Scholar
  31. 31.
    Xu, Y., Song, F., Feng, G., Zhao, Y.: A novel local preserving projection scheme for use with face recognition. Expert Syst. Appl. 37(9), 6718–6721 (2010)CrossRefGoogle Scholar
  32. 32.
    Yu, J., Tao, D., Wang, M.: Adaptive hypergraph learning and its application in image classification. IEEE Trans. Image Process. 21(7), 3262–3272 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, C., Qin, Y., Zhu, X., Zhang, J., Zhang, S.: Clustering-based missing value imputation for data preprocessing. In: IEEE International Conference on Industrial Informatics, pp. 1081–1086 (2006)Google Scholar
  34. 34.
    Zhang, S., Cheng, D., Zong, M., Gao, L.: Self-representation nearest neighbor search for classification. Neurocomputing 195, 137–142 (2016)CrossRefGoogle Scholar
  35. 35.
    Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for KNN classification. ACM Transactions on Intelligent Systems and Technology (2016)Google Scholar
  36. 36.
    Zhang, S., Wu, X., Zhang, C.: Multi-database mining. 2, 5–13 (2003)Google Scholar
  37. 37.
    Zhao, Z., Wang, L., Liu, H., Ye, J.: On similarity preserving feature selection. IEEE Trans. Knowl. Data Eng. 25(3), 619–632 (2013)CrossRefGoogle Scholar
  38. 38.
    Zhu, P., Zuo, W., Zhang, L., Hu, Q., Shiu, S.C.: Unsupervised feature selection by regularized self-representation. Pattern Recogn. 48(2), 438–446 (2015)CrossRefGoogle Scholar
  39. 39.
    Zhu, X., Huang, Z., Shen, H.T., Cheng, J., Xu, C.: Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recogn. 45(8), 3003–3016 (2012)CrossRefzbMATHGoogle Scholar
  40. 40.
    Zhu, X., Suk, H.-I., Shen, D.: Sparse discriminative feature selection for multi-class Alzheimer’s disease classification. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 157–164. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10581-9_20 Google Scholar
  41. 41.
    Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z.: Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23(1), 110–121 (2011)CrossRefGoogle Scholar
  42. 42.
    Zhu, X., Zhang, S., Zhang, J., Zhang, C.: Cost-sensitive imputing missing values with ordering. In: AAAI Conference on Artificial Intelligence, 22–26 July 2007, Vancouver, British Columbia, Canada, pp. 1922–1923 (2007)Google Scholar
  43. 43.
    Zhu, Y., Lucey, S.: Convolutional sparse coding for trajectory reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 529–540 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Wei He
    • 1
    • 2
  • Xiaofeng Zhu
    • 1
    • 2
    Email author
  • Yonggang Li
    • 1
    • 2
  • Rongyao Hu
    • 1
    • 2
  • Yonghua Zhu
    • 3
  • Shichao Zhang
    • 1
    • 2
  1. 1.Guangxi Key Lab of Multi-source Information Mining & SecurityGuangxi Normal UniversityGuilinChina
  2. 2.College of CS & ITGuangxi Normal UniversityGuilinChina
  3. 3.Guangxi UniversityNanningChina

Personalised recommendations