Advertisement

Synthetic Traffic Model of the Graph500 Communications

  • Pablo FuentesEmail author
  • Enrique Vallejo
  • José Luis Bosque
  • Ramón Beivide
  • Andreea Anghel
  • Germán Rodríguez
  • Mitch Gusat
  • Cyriel Minkenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10048)

Abstract

As BigData applications have gained momentum over the last years, the Graph500 benchmark has appeared in an attempt to steer the design of HPC systems to maximize the performance under memory-constricted application workloads. A realistic simulation of such benchmarks for architectural research is challenging due to size and detail limitations, and synthetic traffic workloads constitute one of the least resource-consuming methods to evaluate the performance. In this work, we propose a synthetic traffic model that emulates the behavior of the Graph500 communications. Our model is empirically obtained through a characterization of several executions of the benchmark with different input parameters. We verify the validity of our model against a characterization of the execution of the benchmark with different parameters. Our model is well-suited for implementation in an architectural simulator.

Keywords

Tree Level Vertex Degree Graph500 Communication Root Vertex BigData Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Graph500 benchmark, May 2016. http://www.graph500.org/
  2. 2.
    Anghel, A., Rodriguez, G., Prisacari, B.: The importance and characteristics of communication in high performance data analytics. In: 2014 IEEE International Symposium on Workload Characterization (IISWC), pp. 80–81. IEEE (2014)Google Scholar
  3. 3.
    Beamer, S., Asanovic, K., Patterson, D.: Locality exists in graph processing: workload characterization on an Ivy bridge server. In: 2015 IEEE International Symposium on Workload Characterization (IISWC), pp. 56–65, October 2015Google Scholar
  4. 4.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model for graph mining. In: Proceedings of 2004 SIAM International Conference on Data Mining, pp. 442–446 (2004)Google Scholar
  5. 5.
    Chambers, J., Hastie, T.: Statistical Models in S. Wadsworth & Brooks/Cole, Pacific Grove (1992)zbMATHGoogle Scholar
  6. 6.
    Fuentes, P., Bosque, J.L., Beivide, R., Valero, M., Minkenberg, C.: Characterizing the communication demands of the Graph500 benchmark on a commodity cluster. In: Proceedings of 2014 IEEE/ACM International Symposium on Big Data Computing, pp. 83–89 (2014)Google Scholar
  7. 7.
    Groër, C., Sullivan, B.D., Poole, S.: A mathematical analysis of the r-mat random graph generator. Networks 58(3), 159–170 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kim, M., Leskovec, J.: Multiplicative attribute graph model of real-world networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 62–73. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-18009-5_7 CrossRefGoogle Scholar
  9. 9.
    Seshadhri, C., Pinar, A., Kolda, T.G.: An in-depth study of Stochastic Kronecker graphs. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 587–596. IEEE (2011)Google Scholar
  10. 10.
    Suzumura, T., Ueno, K., Sato, H., Fujisawa, K., Matsuoka, S.: Performance characteristics of Graph500 on large-scale distributed environment. In: 2011 IEEE International Symposium on Workload characterization (IISWC), pp. 149–158. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Pablo Fuentes
    • 1
    Email author
  • Enrique Vallejo
    • 1
  • José Luis Bosque
    • 1
  • Ramón Beivide
    • 1
  • Andreea Anghel
    • 2
  • Germán Rodríguez
    • 3
  • Mitch Gusat
    • 2
  • Cyriel Minkenberg
    • 3
  1. 1.University of CantabriaSantanderSpain
  2. 2.IBM Zurich Research LaboratoryRüschlikonSwitzerland
  3. 3.Rockley PhotonicsPasadenaUSA

Personalised recommendations