Advertisement

Towards Parallel CFD Computation for the ADAPT Framework

  • Imad KissamiEmail author
  • Christophe Cérin
  • Fayssal Benkhaldoun
  • Gilles Scarella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10048)

Abstract

In order to run Computational Fluid Dynamics (CFD) codes on large scale infrastructures, parallel computing has to be used because of the computational intensive nature of the problems. In this paper we investigate the ADAPT platform where we couple flow Partial Differential Equations and a Poisson equation. This leads to a linear system which we solve using direct methods. The implementation deals with the MUMPS parallel multi-frontal direct solver and mesh partitioning methods using METIS to improve the performance of the framework. We also investigate, in this paper, how the mesh partitioning methods are able to optimize the mesh cell distribution for the ADAPT solver. The experience gained in this paper facilitates the move to a Service Oriented view of ADAPT as future work.

Keywords

Unstructured mesh Mesh partitioning Parallel direct solver Multi-frontal method MUMPS METIS Multi-physics Multi-scale and multilevel algorithms 

References

  1. 1.
    Assous, F., Segré, J., Sonnendrücker, E.: A domain decomposition method for the parallelization of a three-dimensional maxwell solver based on a constrained formulation. Math. Comput. Simul. 81(11), 2371–2388 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Vecil, F., Mantas, J.M., Cáceres, M.J., Sampedro, C., Godoy, A., Gmiz, F.: A parallel deterministic solver for the Schrodinger-Poisson-Boltzmann system in ultra-short DG-MOSFETS: comparison with Monte-Carlo. Comput. Math. Appl. 67(9), 1703–1721 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Notay, Y., Napov, A.: A massively parallel solver for discrete poisson-like problems. J. Comput. Phys. 281, 237–250 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kumar, P., Markidis, S., Lapenta, G., Meerbergen, K., Roose, D.: High performance solvers for implicit particle in cell simulation. Procedia Comput. Sci. 18, 2251–2258 (2013)CrossRefGoogle Scholar
  5. 5.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28, 135–151 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boisvert, R.F., Dongarra, J.: Preface to the special issue on the basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28(2), 133–134 (2002)CrossRefGoogle Scholar
  8. 8.
    Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y., Koster, J.: MUMPS: a general purpose distributed memory sparse solver. In: Sørevik, T., Manne, F., Gebremedhin, A.H., Moe, R. (eds.) PARA 2000. LNCS, vol. 1947, pp. 121–130. Springer, Heidelberg (2001). doi: 10.1007/3-540-70734-4_16 CrossRefGoogle Scholar
  9. 9.
    Amestoy, P., Guermouche, A., L’Excellent, J.-Y., Pralet, S.: Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Benkhaldoun, F., Fort, J., Hassouni, K., Karel, J.: Simulation of planar ionization wave front propagation on an unstructured adaptive grid. J. Comput. Appl. Math. 236, 4623–4634 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lachat, C., Pellegrini, F., Dobrzynski, C.: PaMPA: parallel mesh partitioning and adaptation. In: 21st International Conference on Domain Decomposition Methods (DD21), Rennes, France, INRIA Rennes-Bretagne-Atlantique, June 2012Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Imad Kissami
    • 1
    • 2
    Email author
  • Christophe Cérin
    • 1
  • Fayssal Benkhaldoun
    • 2
  • Gilles Scarella
    • 2
  1. 1.LIPN, Université de Paris 13VilletaneuseFrance
  2. 2.LAGA, Université de Paris 13VilletaneuseFrance

Personalised recommendations