Deterministic Construction of Regular Geometric Graphs with Short Average Distance and Limited Edge Length

  • Satoshi Fujita
  • Koji Nakano
  • Michihiro Koibuchi
  • Ikki Fujiwara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10048)


This paper proposes a deterministic method to construct 5-regular geometric graphs with short average distance under the constraint such that the set of vertices is a subset of \(\mathbb {N}\times \mathbb {N}\) and the length of each edge is at most 4. This problem is motivated by the design of efficient floor plan of parallel computers consisting of a number of computing nodes arranged on a two-dimensional array. In such systems, the degree of vertices is determined by the number of ports of the routers and the edge length is limited by a certain value determined by the cycle time. The goodness of the resulting geometric graph is evaluated by the average shortest path length (ASPL) between vertices which reflects the average communication delay between computing nodes. The idea of the proposed method is to arrange the basic component derived from (3, g)-cage in a two-dimensional manner and to connect adjacent components by parallel edges of length 4 each. The result of numerical calculations shows that the average distance in the resulting graph is close to the lower bound so that the gap to the lower bound is less than 0.98 when the number of vertices is 432000.


Regular geometric graphs Average shortest path length Cage theory 


  1. 1.
    Ajima, Y., Sumimoto, S., Shimizu, T.: Tofu: a 6D Mesh/Torus interconnect for exascale computers. IEEE Comput. 42(11), 36–40 (2009)CrossRefGoogle Scholar
  2. 2.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. Theor. Appl. 4(5), 235–282 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Besta, M., Hoefler, T.: Slim fly: a cost effective low-diameter network topology. In: SC 2014, pp. 348–359 (2014)Google Scholar
  4. 4.
    Cerf, V.G., Cowan, D.D., Mullin, R.C., Stanton, R.G.: A lower bound on the average shortest path length in regular graphs. Netw. 4(4), 335–342 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chaix, F., Koibuchi, M., Fujiwara, I.: Suitability of the random topology for HPC applications. In: Proceedings 24th Euromicro Int’l Conference on Parallel, Distributed, and Network-Based Processing (PDP 2016), pp. 301–304 (2016)Google Scholar
  6. 6.
    Damerell, R.M.: On Moore graphs. Proc. Cambridge Phil. Soc. 74, 227–236 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Erdös, P., Sachs, H.: Regülare graphen gegebener taillenweite mitminimaler knotenzahl. Wiss. Z. Uni. Halle (Math. Nat.) 12, 251–257 (1963)Google Scholar
  8. 8.
    Fujiwara, I., Koibuchi, M., Matsutani, H., Casanova, H.: Swap-and-randomize: a method for building low-latency HPC interconnects. IEEE Trans. Parallel Distrib. Syst. 26(7), 2051–2060 (2015)CrossRefGoogle Scholar
  9. 9.
    Higham, D.J., Rasajski, M., Przulj, N.: Fitting a geometric graph to a protein-protein interaction network. Bioinform. 24(8), 1093–1099 (2008)CrossRefGoogle Scholar
  10. 10.
    Hoffman, A.J., Singleton, R.R.: On Moore graphs with diameter 2 and 3. IBM J. Res. Develop. 4, 497–504 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable Dragonfly topology. In: Proceedings of the 35th International Symposium on Computer Architecture (ISCA), pp. 77–88 (2008)Google Scholar
  12. 12.
    Koibuchi, M., Matsutani, H., Amano, H., Hsu, D.F., Casanova, H.: A case for random shortcut topologies for HPC interconnects. In: Proceedings of the 39th International Symposium on Computer Architecture (ISCA), pp. 177–188 (2012)Google Scholar
  13. 13.
    Mellanox Technologies. IS5024, Mellanox Technologies.
  14. 14.
    Mellanox Technologies.
  15. 15.
    Miller, M., Širáň, J.: Moore graphs and beyond: a survey of the degree/diameter problem. Electron. J. Comb., No. DS14 (2005)Google Scholar
  16. 16.
    Nakano, K., Takafuji, D., Fujita, S., Matsutani, H., Fujiwara, I., Koibuchi, M.: Randomly optimized grid graph for low-latency interconnection networks. In: Proceedings International Conference on Parallel Processing (ICPP) (2016, to appear)Google Scholar
  17. 17.
    Pinheiro, M.A., Kybic, J.: Path descriptors for geometric graph matching and registration. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol. 8814, pp. 3–11. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-11758-4_1 Google Scholar
  18. 18.
    Hemmert, K.S., Vetter, J.S., Bergman, K., Das, C., Emami, A., Janssen, C., Panda, D.K., Stunkel, C., Underwood, K., Yalamanchili, S.: Report on institute for advanced architectures and algorithms. In: Proceedings Interconnection Networks Workshop (2008)Google Scholar
  19. 19.
    Tomkins, J.: Interconnects: a buyers point of view. In: Proceedings ACS Workshop (2007)Google Scholar
  20. 20.
    Towles, B., Grossman, J.P., Greskamp, B., Shaw, D.E.: Unifying on-chip and inter-node switching within the Anton 2 network. In: Proceedings of the 41st International Symposium on Computer Architecture (ISCA), pp. 1–12 (2014)Google Scholar
  21. 21.
    SimGrid: Versatile simulation of distributed systems.
  22. 22.
    Yang, H., Tripathi, J., Jerger, N.E., Gibson, D.: Dodec: random-link, low-radix on-chip networks. In: MICRO, pp. 496–508 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Satoshi Fujita
    • 1
  • Koji Nakano
    • 1
  • Michihiro Koibuchi
    • 2
  • Ikki Fujiwara
    • 2
  1. 1.Department of Information EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations