Improving the Performance of Volunteer Computing with Data Volunteers: A Case Study with the ATLAS@home Project

  • Saúl Alonso-Monsalve
  • Félix García-Carballeira
  • Alejandro Calderón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10048)

Abstract

Volunteer computing is a type of distributed computing in which ordinary people donate processing and storage resources to scientific projects. BOINC is the main middleware system for this type of computing. The aim of volunteer computing is that organizations be able to attain large computing power thanks to the participation of volunteer clients instead of a high investment in infrastructure. There are projects, like the ATLAS@home project, in which the number of running jobs has reached a plateau, due to a high load on data servers caused by file transfer. This is why we have designed an alternative, using the same BOINC infrastructure, in order to improve the performance of BOINC projects that have reached their physical limit. This alternative involves having a percentage of the volunteer clients running as data servers, called data volunteers, that improve the performance by reducing the load on data servers. This paper describes our alternative in detail and shows the performance of the solution using a simulator of our own, ComBoS.

Keywords

BOINC Data volunteers Throughput Simulation Volunteer computing 

References

  1. 1.
    Adam-Boundarios, C., Cameron, D., Filipcic, A., Lancon, E., Wu, W.: ATLAS@Home: harnessing volunteer computing for HEP. In: 21st International Conference on Computing in High Energy and Nuclear Physics, CHEP2015, Okinawa, Japan (2015)Google Scholar
  2. 2.
    Alonso-Monsalve, S., García-Carballeira, F., Calderón, A.: Analyzing the performance of volunteer computing for data intensive applications. In: 14th International Conference on High Performance Computing & Simulation, HPCS 2016, Innsbruck, Austria (2016)Google Scholar
  3. 3.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)Google Scholar
  4. 4.
    Anderson, D.P.: Local scheduling for volunteer computing. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–8. IEEE (2007)Google Scholar
  5. 5.
    Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)CrossRefGoogle Scholar
  6. 6.
    Anderson, D., Korpela, E., Walton, R.: High-performance task distribution for volunteer computing. In: 2005 First International Conference on e-Science and Grid Computing, pp. 8–203 (2005)Google Scholar
  7. 7.
  8. 8.
    Javadi, B., Kondo, D., Vincent, J.-M., Anderson, D.P.: Discovering statistical models of availability in large distributed systems: an empirical study of SETI@home. IEEE Trans. Parallel Distrib. Syst. 22, 1896–1903 (2011)CrossRefGoogle Scholar
  9. 9.
    Balicki, J., Korłub, W., Paluszak, J.: Big data processing by volunteer computing supported by intelligent agents. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 268–278. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19941-2_26 CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
    Bruno, R., Ferreira, P.: FreeCycles: efficient data distribution for volunteer computing. In: CloudDP 2014 Proceedings of the Fourth International Workshop on Cloud Data and Platforms (2014)Google Scholar
  13. 13.
    Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable, and accurate simulation of distributed applications and platforms. J. Parallel Distrib. Comput. 74(10), 2899–2917 (2014)CrossRefGoogle Scholar
  14. 14.
    Climateprediction.net. http://climateprediction.net
  15. 15.
    Creating BOINC Projects. https://boinc.berkeley.edu/boinc.pdf
  16. 16.
    Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and scalable simulation of volunteer computing systems using SimGrid. In: Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC 2010, pp. 605–612. ACM, New York (2010)Google Scholar
  17. 17.
  18. 18.
    Elwaer, A., Taylor, I.J., Rana, O.: Optimizing data distribution in volunteer computing systems using resources of participants. Scalable Comput.: Pract. Exp. 12, 193–208 (2011)Google Scholar
  19. 19.
    García-López, P., Datta, A., Barcellos, M., Montresor, A., Higashino, T., Felber, P., Epema, D., Iamnitchi, A., Riviere, E.: Edge-centric computing: vision and challenges. ACM SIGCOMM Comput. Commun. 45, 37–42 (2015)CrossRefGoogle Scholar
  20. 20.
    Kelly, I., Taulor, I.: Bridging the data management gap between service and desktop grids. In: Kacsuk, P., Lovas, R., Nemeth, Z. (eds.) Distributed and Parallel Systems In Focus: Desktop Grid Computing. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    LIGO Scientific Collaboration, Anderson, D.P.: Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Phys. Rev. D, 80, 042003 (2009)Google Scholar
  22. 22.
    Paul, P.: SETI@home project and its website. Crossroads 8(3), 3–5 (2002)CrossRefGoogle Scholar
  23. 23.
    Top. 500 Supercomputer list. http://www.top500.org/
  24. 24.
  25. 25.
    Werthimer, D., Cobb, J., Lebofsky, M., Anderson, D., Korpela, E.: SETI@HOME–massively distributed computing for SETI. Comput. Sci. Eng. 3(1), 78–83 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Saúl Alonso-Monsalve
    • 1
  • Félix García-Carballeira
    • 1
  • Alejandro Calderón
    • 1
  1. 1.Department of Computer Science and Engineering, Computer Architecture GroupUniversity Carlos III of MadridLeganés, MadridSpain

Personalised recommendations