Advertisement

Deriving Useful Information from Bimonthly Global-Scale Climate Analysis for Climate Change Adaptation Over East Africa

  • Isaac K. TettehEmail author
  • Nana K. A. Appiah-Badu
  • Fredrick H. M. Semazzi
  • Olawale E. Olayide
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

Implementation of appropriate climate change adaptation strategies is contingent on a good understanding of climate variability. Efforts to adapt to climate change impacts in East African societies have flourished. However, an area of research which has been neglected and could enhance adaptive capacity is bimonthly global-scale climate analysis in relationship to the long rains, during the climatologically prominent phase of El Niño Southern Oscillation (ENSO). Empirical analyses were carried out using nearly 60 years of standardized gridded rainfall, horizontal wind and sea surface temperature (SST) data, to gain predictive understanding of the region’s climate. This study has delineated SST and divergent circulation features related to three of the four rainfall modes. The modes responded differently to the Pacific ENSO, Atlantic and Indian Oceans. However, there was no clear relationship between the second mode and the global SST distributions. Having substantiated this with monthly and seasonal-scale SST analyses, it suggested that this atypical pattern warranted numerical modeling studies or should be verified using other high resolution datasets. The SST predictor features identified may be used to enhance operational seasonal climate prediction scheme. In this way, end users would be better prepared to select appropriate climate change adaption options.

Keywords

East Africa Standardized global sea surface temperature anomalies Standardized upper level circulations anomalies Long rainfall modes 

Notes

Acknowledgements

The authors wish to acknowledge the following data sources: NCEP/NCAR reanalysis, CRU gridded precipitation data, and NOAA ERSST.

References

  1. Akponikpè, P. B., Ge´rard, I. B., Michels, K., & Bielders. C. L. (2010) Use of the APSIM model in long term simulation to support decision making regarding nitrogen management for pearl millet in the Sahel. In Journal of European Agronomy, 32, 144–154.Google Scholar
  2. Barnston, A. G., & Ropelewski, C. F. (1992). Prediction of ENSO episodes using canonical correlation analysis. In Journal of Climate, 17, 1316–1345.CrossRefGoogle Scholar
  3. Bowden, J. H., & Semazzi, F. H. M. (2007). Empirical analysis of intraseasonal climate variability over the greater Horn of Africa. In Journal of Climate, 20, 5715–5731.CrossRefGoogle Scholar
  4. Ford, J. D., Berrang-Ford, L., Bunce, A., McKay, C., Irwin, M., & Pearce, T. (2015). The status of climate change adaptation in Africa and Asia. In Regional Environmental Change, 15, 801–814. doi: 10.1007/s10113-014-0648-2 CrossRefGoogle Scholar
  5. Funk, C. (2012). Exceptional warming in the Western Pacific-Indian Ocean Warm Pool has contributed to more frequent droughts in Eastern Africa. In Bulletin of American Meteorological Society, 7, 1049–1051.Google Scholar
  6. Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. In International Journal Climatology, 27, 1119–1152. doi: 10.1002/joc.1499 CrossRefGoogle Scholar
  7. Harris, I., Jones, P. D., Osborna, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. In International Journal of Climatology, 34, 623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  8. Indeje, M., Semazzi, F. H. M., & Ogallo, L. J. (2000). ENSO signals in East African rainfall seasons. In International Journal of Climatology, 20, 19–46.CrossRefGoogle Scholar
  9. Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis (6th ed.). New Jersey, USA: Pearson Education, INC.Google Scholar
  10. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. In Bulletin of American Meteorological Society, 77, 437–471.CrossRefGoogle Scholar
  11. Krishnamurti, T. N. (1971). Tropical east-west circulations during the northern summer. In Journal of Atmospheric Sciences, 28, 1342–1347.CrossRefGoogle Scholar
  12. Latif, M., Dommenget, D., Dima, M., & Grotzner, A. (1999). The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December–January 1997/98. In Journal of Climate, 12, 3497–3504.CrossRefGoogle Scholar
  13. Marchant, R., Mumbi, C., Behera, S., & Yamagata, T. (2006). The Indian Ocean dipole—the unsung driver of climatic variability in East Africa. In African Journal of Ecology, 45, 4–16.Google Scholar
  14. Nicholson, S. E., & Entekhabi, D. (1986). The quasi-periodic behaviour of rainfall variability in Africa and its relationship to the Southern Oscillation. In Archiv für Meteorologie, Geophysik und Bioklimatologie, 34, 311–348.CrossRefGoogle Scholar
  15. North, G. R., Bell, T. L., Cahalan, R. F., & Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. In Monthly Weather Review, 110, 699–706.CrossRefGoogle Scholar
  16. Ogallo, L. J. (1988). Relationships between seasonal rainfall in East Africa and the Southern Oscillation. In International Journal of Climatology, 8, 31–43.CrossRefGoogle Scholar
  17. Ogallo, L. J. (1989). The spatial and temporal patterns of the East African seasonal rainfall derived from principal component analysis. In International Journal Climatology, 9, 145–167.CrossRefGoogle Scholar
  18. Ropelewski, C. F., & Halpert, M. S. (1987). Global and regional scale precipitation patterns associated with the El Niño Southern Oscillation. In Monthly Weather Review, 115, 1606–1626.CrossRefGoogle Scholar
  19. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. In Nature, 401, 360–363.Google Scholar
  20. Schreck, C. J., & Semazzi, F. H. M. (2004). Variability of the recent climate of eastern Africa. In International Journal of Climatology, 24, 681–701.CrossRefGoogle Scholar
  21. Smith, T. M., & Reynolds, R. W. (2004). Improved extended reconstruction of SST (1854–1997). In Journal of Climate, 17, 2466–2477.CrossRefGoogle Scholar
  22. Smith, K. A., & Semazzi, F. H. M. (2014). The role of the dominant modes of precipitation variability over Eastern Africa in modulating the hydrology of lake victoria. In Advances in Meteorology, 11. Article ID 516762, http://dx.doi.org/10.1155/2014/516762
  23. Tetteh, I. K. (2012). West African seasonal climate variability and predictability, PhD thesis, North Carolina State University.Google Scholar
  24. Trenberth, K. E., Stepaniak, D. P., & Carbon, J. M. (2000). The global monsoon as seen through the divergent atmospheric circulation. In Journal of Climate, 13, 3969–3993.CrossRefGoogle Scholar
  25. Washington, R., Harrison, M., Conway, D., Black, E., Challinor, A., Grimes, D., et al. (2006). African climate change—Taking the shorter route. In Bulletin of American Meteorological Society, 1355–1366.Google Scholar
  26. Wilks, D. S. (2006). Statistical methods in the atmospheric sciences (3rd ed.). New York, USA: Academic Press.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isaac K. Tetteh
    • 1
    Email author
  • Nana K. A. Appiah-Badu
    • 2
  • Fredrick H. M. Semazzi
    • 3
  • Olawale E. Olayide
    • 1
    • 4
  1. 1.Department of Theoretical and Applied BiologyKwame Nkrumah University of Science and Technology (KNUST) KumasiKumasiGhana
  2. 2.Department of PhysicsKNUSTKumasiGhana
  3. 3.Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  4. 4.Centre for Sustainable DevelopmentUniversity of IbadanIbadanNigeria

Personalised recommendations