Potential for Scaling up Climate Smart Agricultural Practices: Examples from Sub-Saharan Africa

  • Kindie TesfayeEmail author
  • Menale Kassie
  • Jill E. Cairns
  • Misiko Michael
  • Clare Stirling
  • Tsedeke Abate
  • B. M. Prasanna
  • Mulugetta Mekuria
  • Habtamu Hailu
  • Dil Bahadur Rahut
  • Olaf Erenstein
  • Bruno Gerard
Part of the Climate Change Management book series (CCM)


Agriculture in Sub-Saharan Africa (SSA) is predominantly rain-fed, and erratic weather patterns and extreme weather events, exacerbated by the changing climate, adds to the challenges faced by smallholder farmers in producing enough food to feed the ever growing population of the region. While the farming communities are responding to these challenges, there is an intensive need for scaling-up adoption of appropriate interventions that can help increase crop yields and resilience to climate change. A review and analysis of potential climate-smart agricultural practices (CSAs) in SSA indicate that some CSAs are increasingly adopted by farmers and show potential for scaling up. Some particularly promising CSAs include drought tolerant (DT) maize varieties and sustainable intensification through crop associations which are increasingly adopted across SSA regions. Other CSA’s which also offer promise include water harvesting and small-scale irrigation, climate information, and natural resource conservation. The presence of successful smallholder CSA practices in SSA means that opportunities exist for cross-country learning and scaling up by supporting farmers’ efforts through exchange of knowledge, incentives and policies.


Climate smart agricultural practices Scaling up Sub-Saharan Africa 



This review paper was supported by the CGIAR Research Programs on Climate Change, Agriculture and Food Security (CCAFS), CRP MAIZE, Drought Tolerance Maize for Africa (DTMA) project funded by the Bill & Melinda Gates Foundation, Adoption Pathways and Maize–Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) projects funded by Australian Centre for International Agricultural Research (ACIAR). The views expressed in this paper are those of the authors and do not necessarily reflect the views of the donor or the authors’ institutions.


  1. Abate, T. (2013). DTMA III highlights for 2012/13: An overview. Presented at the Drought Tolerant Maize for Africa (DMA) Annual Meeting, 23–27 September 2013, Nairobi, Kenya.Google Scholar
  2. Abebe, A., Lasage, R., Alemu, E., Gowing, J., & Woldaregay, K. (2012). Ethiopia: Opportunities for building on tradition—Time for action. In W. Critchley & J. Gowing (Eds.), Water harvesting in Sub-Saharan Africa (pp. 70–84). London.Google Scholar
  3. Adimassu, Z., Langan, S., & Johnston, R. (2015). Highlights of soil and water conservation investments in Ethiopia (In Press).Google Scholar
  4. AGRA. (2014). Africa agriculture status report: Climate change and smallholder agriculture in sub-Saharan Africa (No. 2). Nairobi, Kenya: Alliance for a Green Revolution in Africa, AGRA.Google Scholar
  5. Alemayehu, F., Taha, N., Nyssen, J., Girma, A., Zenebe, A., Behailu, M., et al. (2009). The impacts of watershed management on land use and land cover dynamics in Eastern Tigray (Ethiopia). Resources, Conservation and Recycling, 53(4), 192–198.CrossRefGoogle Scholar
  6. Araya, H., & Edwards, S. (2006). The Tigray experience: A success story in sustainable agriculture (Vol. 4). Penang, Malaysia: TWN.Google Scholar
  7. Araya, T., Nyssen, J., Govaerts, B., Baudron, F., Carpentier, L., Bauer, H., et al. (2015). Restoring cropland productivity and profitability in northern Ethiopian drylands after nine years of resource-conserving agriculture. Experimental Agriculture, 52(2), 165–187.CrossRefGoogle Scholar
  8. Balana, B. B., Muys, B., Haregeweyn, N., Descheemaeker, K., Deckers, J., Poesen, J., et al. (2012). Cost-benefit analysis of soil and water conservation measure: The case of exclosures in northern Ethiopia. Forest Policy and Economics, 15(2012), 27–36.CrossRefGoogle Scholar
  9. Biazin, B., Sterk, G., Temesgen, M., Abdulkedir, A., & Stroosnijder, L. (2012). Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Physics and Chemistry of the Earth, 47–48, 139–151.CrossRefGoogle Scholar
  10. Bruce, W. B., Edmeades, G. O., & Barker, T. C. (2002). Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 53(366), 13–25.CrossRefGoogle Scholar
  11. CGIAR. (2006). Drought tolerant crops for Drylands. Accessed on January 19, 2016.
  12. Cooper, P. J. M., Cappiello, S., Vermeulen, S. J., Campbell, B. M., Zougmoré, R., & Kinyangi, J. (2013). Large-scale implementation of adaptation and mitigation actions in agriculture. CCAFS Working paper, No. 50. Copenhagen, Denmark.Google Scholar
  13. Corbeels, M., de Graaff, J., Ndah, T. H., Penot, E., Baudron, F., Naudin, K., et al. (2014). Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agriculture, Ecosystems & Environment, 187, 155–170.CrossRefGoogle Scholar
  14. Critchley, W., & Gowing, J. (Eds.). (2012). Water harvesting in Sub-Saharan Africa. London: Routledge.Google Scholar
  15. Deichert, G., Krämer, F., & Schöning, A. (2014). Turning degraded land into productive landscapes, Ethiopian highlands. ETFRN NEWS 56, pp. 82–87.Google Scholar
  16. Edmeades, G. (2008). Drought tolerance in maize: An emerging reality. In J. Clive (Ed.), Global status of commercialized Biotech/GM Crops. ISAAA Brief No. 39. Ithaca, NY: ISAAA.Google Scholar
  17. Edwards, S., Berhan, T., Egziabher, G., & Araya, H. (2007). Successes and challenges in ecological agriculture: Experiences from Tigray, Ethiopia. In L. L. Ching, S. Edwards, N. E.-H. Scialabba (Eds.), Climate change and food systems resilience in Sub-Saharan Africa, pp. 231–294. Rome, Italy: FAO.Google Scholar
  18. Fisher, M., Abate, T., Lunduka, R. W., Asnake, W., Alemayehu, Y., & Madulu, R. B. (2015). Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Climatic Change, 133(2), 283–299.CrossRefGoogle Scholar
  19. Gowin, J., & Bunclark, L. (2013). Water harvesting experience in sub-Saharan Africa—Lessons for sustainable intensification of rainfed agriculture and the influence of available soils and rainfall data. Geophysical Research Abstracts, 15, 13640.Google Scholar
  20. Hadgu, K. M. (2011). Land rehabilitation and improved management: The case of Tigray, northern Ethiopia. Accessed on December 10, 2015.
  21. Haglund, E., Ndjeunga, J., Snook, L., & Pasternak, D. (2011). Dry land tree management for improved household livelihoods: Farmer managed natural regeneration in Niger. Journal of Environmental Management, 92(7), 1696–1705.CrossRefGoogle Scholar
  22. Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D., & Lesschen, J. P. (2005). Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agriculture, Ecosystems & Environment, 108(1), 1–16.CrossRefGoogle Scholar
  23. Haregeweyn, N., Tsunekawa, A., Nyssen, J., Poesen, J., Tsubo, M., Meshesha, D. T., et al. (2015). Soil erosion and conservation in Ethiopia: A review. Progress in Physical Geography, 39(6), 750–774.CrossRefGoogle Scholar
  24. Hellmuth, M. E., Moorhead, A., Thomson, M. C., & Williams, J. (2007). Climate risk management in Africa: Learning from practice. In M. E. Hellmuth, A. Moorhead, M. C. Thomson, & J. Williams (Eds.), Climate and society: Climate risk management in Africa: Learning from practice (Vol. 1). Columbia University, New York, USA: IRI.Google Scholar
  25. IWMI. (2007). Water for food, water for life: A comprehensive assessment of water management in agriculture. London: Earthscan.Google Scholar
  26. Kassie, M., Teklewold, H., Marenya, P., Jaleta, M., & Erenstein, O. (2015). Production risk and food security under alternative technology choices in Malawi. Application of a multinomial endogenous switching regression. Journal of Agricultural Economics, 66(3), 640–659.CrossRefGoogle Scholar
  27. Kirui, O., & Mirzabaev, A. (2014). Economics of land degradation in Eastern Africa. ZEF Working Paper Series, No. 128. University of Bonn.Google Scholar
  28. Lemenih, M., & Kassa, H. (2014). Re-greening Ethiopia: History, challenges and lessons. Forests, 5(8), 1896–1909.CrossRefGoogle Scholar
  29. Malesu, M., Khaka, E., Mati, B., Oduor, A., De Bock, T., Nyabenge, M., et al. (2007). Mapping the potential of rainwater harvesting technologies in Africa: A GIS overview and atlas of development domains for the continent and nine selected countries. Nairobi, Kenya.Google Scholar
  30. Malesu, M. M., De Leeuw, J., & Oduor, A. (2012). Water harvesting experiences from the SearNet (2003–2012). Accessed on January 15, 2016.
  31. Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences, 18(9), 3635–3649.CrossRefGoogle Scholar
  32. Mekuria, W., Veldkamp, E., Haile, M., Nyssen, J., Muys, B., & Gebrehiwot, K. (2007). Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. Journal of Arid Environments, 69(2), 270–284.CrossRefGoogle Scholar
  33. Nyasimi, M., Amwata, D., Hove, L., Kinyangi, J., & Wamukoya, G. (2014). Evidence of impact : Climate-smart agriculture in Africa. CCAFS Working Paper No. 86, Copenhagen, Denmark.Google Scholar
  34. Nyssen, J. (1998). Soil and water conservation under changing socio-economic conditions in the Tembien Highlands (Tigray, Ethiopia). Bulletin de La Société Géographique de Liège, 35, 5–17.Google Scholar
  35. Nyssen, J., Descheemaeker, K., Haile, M., Deckers, J., & Poesen, J. (2007). Lessons learnt from 10 years research on soil erosion and soil and water conservation in Tigray. Tigray Livelihood Papers No. 7. Mekelle: Zala-Daget Project, Mekelle University, K.U. Leuven, Relief Society of Tigray, Africa museum and Tigray Bureau of Agriculture and Rural Development, 53 p.Google Scholar
  36. Nyssen, J., Frankl, A., Haile, M., Hurni, H., Descheemaeker, K., Crummey, D., et al. (2014). Environmental conditions and human drivers for changes to north Ethiopian mountain landscapes over 145 years. Science of the Total Environment, 485–486, 164–179.CrossRefGoogle Scholar
  37. Nyssen, J., Frankl, A., Zenebe, A., Deckers, J., & Poesen, J. (2015a). Land management in the Northern Ethiopian Highlands: Local and global perspectives; past, present and future. Land Degradation and Development, 26(7), 759–764.CrossRefGoogle Scholar
  38. Nyssen, J., Frankl, A., Zenebe, A., Poesen, J., & Deckers, J. (2015b). Environmental conservation for food production and sustainable livelihood in Tropical Africa. Land Degradation and Development, 26(7), 629–631.CrossRefGoogle Scholar
  39. Nyssen, J., Haile, M., Naudts, J., Munro, N., Poesen, J., Moeyersons, J., et al. (2009a). Desertification? Northern Ethiopia re-photographed after 140 years. Science of the Total Environment, 407(8), 2749–2755.CrossRefGoogle Scholar
  40. Nyssen, J., Poesen, J., & Deckers, J. (2009b). Land degradation and soil and water conservation in tropical highlands. Soil and Tillage Research, 103, 197–202.CrossRefGoogle Scholar
  41. Pachpute, J. S., Tumbo, S. D., Sally, H., & Mul, M. L. (2009). Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resources Management, 23(13), 2815–2839.CrossRefGoogle Scholar
  42. Pretty, J., Toulmin, C., & Williams, S. (2011). Sustainable intensification in African agriculture. International Journal of Agricultural Sustainability, 9(1), 5–24.CrossRefGoogle Scholar
  43. Rinaudo, T. (2007). The development of Farmer Managed Natural Regeneration. Accessed on January 29, 2016.
  44. Schroter, D., Cramer, W., Leemans, R., Prentice, I. C. C., Araujo, M. B., Arnell, N. W., et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310(5752), 1333–1337.CrossRefGoogle Scholar
  45. Shiferaw, B., Tesfaye, K., Kassie, M., Abate, T., Prasanna, B. M., & Menkir, A. (2014). Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, 3, 67–79.CrossRefGoogle Scholar
  46. Steenwerth, K. L., Hodson, A. K., Bloom, A. J., Carter, M. R., Cattaneo, A., Chartres, C. J., et al. (2014). Climate-smart agriculture global research agenda: Scientific basis for action. Agriculture & Food Security, 3(1), 1–39.CrossRefGoogle Scholar
  47. Stroosnijder, L. (2009). Modifying land management in order to improve efficiency of rainwater use in the African highlands. Soil and Tillage Research, 103(2), 247–256.CrossRefGoogle Scholar
  48. Synnevag, G., & Lambrou, J. (2012). Climate-smart agriculture: Possible roles of Agricultural Universities in a strengthened Norwegian climate change engagement in Africa. Noragric Report No. 64, Department of International Environment and Development Studies, Noragric Norwegian University of Life Sciences, UMB.Google Scholar
  49. Tadesse, M., Shiferaw, B., & Erenstein, O. (2015). Weather index insurance for managing drought risk in smallholder agriculture: Lessons and policy implications for Sub-Saharan Africa. Agricultural and Food Economics, 3, 26.CrossRefGoogle Scholar
  50. Tall, A., Hansen, J., Jay, A., Campbell, B., Kinyangi, J., Aggarwal, P. K., et al. (2014). Scaling up climate services for farmers: Mission possible. Learning from good practice in Africa and South Asia. CCAFS Report No. 13.Google Scholar
  51. Teklewold, H., Kassie, M., Shiferaw, B., & Kohlin, G. (2013). Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agricultural chemical use and demand for labor. Ecological Economics, 93, 85–93.CrossRefGoogle Scholar
  52. Tesfaye, K., Gbegbelegbe, S., Cairns, J. E., Shiferaw, B., Prasanna, B. M., Sonder, K., et al. (2015). Maize systems under climate change in sub-Saharan Africa: Potential impacts on production and food security. International Journal of Climate Change Strategies and Management, 7(3), 247–271.CrossRefGoogle Scholar
  53. Tigabu, M., Lemenih, M., Negash, M., & Teketay, D. (2014). Rehabilitation of degraded forest and woodland ecosystems in Ethiopia for sustenance of livelihoods and ecosystem services. In P. Katila, G. Galloway, W. de Jong, P. Pacheco, & G. Mery (Eds.), Forests under pressure—Local responses to global issues (pp. 299–313). Vantaa: International Union of Forest Research Organisations (IUFRO).Google Scholar
  54. Tougiani, A., Guero, C., & Rinaudo, T. (2009). Community mobilisation for improved livelihoods through tree crop management in Niger. GeoJournal, 74(5), 377–389.CrossRefGoogle Scholar
  55. Wakeyo, M. B. (2012). Economic analysis of water harvesting technologies in Ethiopia. Accessed on January 15, 2016.
  56. Walraevens, K., Vandecasteele, I., Martens, K., Nyssen, J., Moeyersons, J., Gebreyohannes, T., et al. (2009). Groundwater recharge and flow in a small mountain catchment in northern Ethiopia. Hydrological Sciences Journal, 54(4), 739–753.CrossRefGoogle Scholar
  57. WMO. (2005). Climate and land degradation. Accessed on January 24, 2016.
  58. World Bank, African Development Bank. (2012). The transformational use of information and communication technologies in Africa. Accessed on January 24, 2016.
  59. Xoconostle-Cázares, B., Ramírez-Ortega, F. A., Flores-Elenes, L., & Ruiz-Medrano, R. (2010). Drought tolerance in crop plants. American Journal of Plant Physiology, 5(5), 241–256.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kindie Tesfaye
    • 1
    Email author
  • Menale Kassie
    • 2
  • Jill E. Cairns
    • 3
  • Misiko Michael
    • 4
  • Clare Stirling
    • 5
  • Tsedeke Abate
    • 4
  • B. M. Prasanna
    • 4
  • Mulugetta Mekuria
    • 3
  • Habtamu Hailu
    • 6
  • Dil Bahadur Rahut
    • 7
  • Olaf Erenstein
    • 7
  • Bruno Gerard
    • 7
  1. 1.International Maize and Wheat Improvement Centre (CIMMYT)Addis AbabaEthiopia
  2. 2.International Center of Insect Physiology and EcologyICIPENairobiKenya
  3. 3.CIMMYTHarareZimbabwe
  4. 4.CIMMYTNairobiKenya
  5. 5.CIMMYTLondonUK
  6. 6.Ministry of AgricultureAddis AbabaEthiopia
  7. 7.CIMMYTEl BatanMexico

Personalised recommendations