Advertisement

Advance Techniques for the Synthesis of Nanostructured Zirconia-Based Ceramics for Thermal Barrier Application

  • Reza Shoja RazaviEmail author
  • Mohammad Reza Loghman-Estarki
Chapter

Abstract

The aim of this chapter is the review of various synthesis methods for the preparation of zirconia-based nanostructure for thermal barrier coatings (TBCs) application. To this end, the main materials used in TBCs, including metal oxide (M) stabilized zirconia (M = MgO, CaO, Y2O3, CeO2, Sc2O3), codoped-zirconia, rare earth-doped zirconiate (REZ) and zirconia--alumina nanocomposite, were reviewed and easy scales up route for the synthesis of them were studied.

Keywords

Thermal Barrier Coating Yttria Stabilize Zirconia Pechini Method Partially Stabilize Zirconia Zirconia Toughen Alumina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stevens R (1986) An introduction to zirconia, Magnesium Elektron. Deutsche Übersetzung in: Handbuch der Keramik, Deutscher WirtschaftsdienstGoogle Scholar
  2. 2.
    Hannink RH, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83(3):461–487CrossRefGoogle Scholar
  3. 3.
    Brog J-P, Chanez C-L, Crochet A, Fromm KM (2013) Polymorphism, what it is and how to identify it: a systematic review. Rsc Advances 3(38):16905–16931CrossRefGoogle Scholar
  4. 4.
    Ikeno H, Krause M, Thomas H, Patzig C, Hu Y, Gawronski A, Tanaka I, Christian R (2013) Variation of Zr-L2, 3 XANES in tetravalent zirconium oxides. J Phys: Condens Matter 25(16):165505Google Scholar
  5. 5.
    Patil KC, Hegde M, Rattan T, Aruna S (2008) Chemistry of nanocrystalline oxide materials-combustion synthesis, properties and applications. World Scientific, New JerseyCrossRefGoogle Scholar
  6. 6.
    Davar F, Hassankhani A, Loghman-Estarki MR (2013) Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceram Int 39(3):2933–2941CrossRefGoogle Scholar
  7. 7.
    Viazzi C, Bonino J-P, Ansart F, Barnabé A (2008) Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. J Alloy Compd 452(2):377–383CrossRefGoogle Scholar
  8. 8.
    Shane M, Mecartney M (1990) Sol-gel synthesis of zirconia barrier coatings. J Mater Sci 25(3):1537–1544CrossRefGoogle Scholar
  9. 9.
    Cao X, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24(1):1–10CrossRefGoogle Scholar
  10. 10.
    Clarke DR, Phillpot SR (2005) Thermal barrier coating materials. Mater Today 8(6):22–29CrossRefGoogle Scholar
  11. 11.
    Maloney MJ (2001) Thermal barrier coating systems and materials. US Patent 6 117 560Google Scholar
  12. 12.
    Lima R, Marple B (2008) Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Mater Sci Eng, A 485(1):182–193CrossRefGoogle Scholar
  13. 13.
    Racek O, Berndt CC, Guru D, Heberlein J (2006) Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques. Surf Coat Technol 201(1):338–346CrossRefGoogle Scholar
  14. 14.
    Lima R, Kucuk A, Berndt C (2002) Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Mater Sci Eng, A 327(2):224–232CrossRefGoogle Scholar
  15. 15.
    Loghman-Estarki MR, Edris H, Jamali H, Ghasemi R, Pourbafrany M, Erfanmanesh M, Ramezani M (2013) Spray drying of nanometric SYSZ powders to obtain plasma sprayable nanostructured granules. Ceram Int 39(8):9447–9457CrossRefGoogle Scholar
  16. 16.
    Loghman-Estarki MR, Pourbafrany M, Razavi RS, Edris H, Bakhshi SR, Erfanmanesh M, Jamali H, Hosseini SN, Hajizadeh-Oghaz M (2014) Preparation of nanostructured YSZ granules by the spray drying method. Ceram Int 40(2):3721–3729CrossRefGoogle Scholar
  17. 17.
    Brandon J, Taylor R (1989) Thermal properties of ceria and yttria partially stabilized zirconia thermal barrier coatings. Surf Coat Technol 39:143–151CrossRefGoogle Scholar
  18. 18.
    Khan AN, Khan S, Ali F, Iqbal M (2009) Evaluation of ZrO2–24MgO ceramic coating by eddy current method. Comput Mater Sci 44(3):1007–1012CrossRefGoogle Scholar
  19. 19.
    Kvernes I (1979) Ceramic coatings on diesel engine components. In: Kvernes I et al (eds) Central Institute for Industrial Research, Oslo, Norway, Dec 1979. From conference on advanced materials for alternate fuel capable directly fired heat engines, pp 233–257Google Scholar
  20. 20.
    Schulz U, Fritscher K, Peters M (1996) EB-PVD Y 2 O 3-and CeO2Y2O3-stabilized zirconia thermal barrier coatings—crystal habit and phase composition. Surf Coat Technol 82(3):259–269CrossRefGoogle Scholar
  21. 21.
    Chatterjee M, Chatterjee A, Ganguli D (1992) Preparation of ZrO2–CaO and ZrO2–MgOfibres by alkoxide Sol–Gel processing. Ceram Int 18(1):43–49CrossRefGoogle Scholar
  22. 22.
    Wang S et al (2006) Coprecipitation synthesis of MgO-doped ZrO2 nano powder. J Am Ceram Soc 89(11):3577–3581CrossRefGoogle Scholar
  23. 23.
    Muccillo R, Saito N, Muccillo E (1995) Properties of zirconia-magnesia solid electrolytes prepared by the citrate method. Mater Lett 25(3):165–169Google Scholar
  24. 24.
    Yuan L, Xiang D, J-k Yu (2013) Effect of solvents on the properties of co-precipitated MgO-ZrO2 nano powders. J Ceram Process Res 14(4):517–520Google Scholar
  25. 25.
    Kim N, Hsieh C-H, Huang H, Prinz FB, Stebbins JF (2007) High temperature 17 O MAS NMR study of calcia, magnesia, scandia and yttria stabilized zirconia. Solid State Ionics 178(27):1499–1506CrossRefGoogle Scholar
  26. 26.
    Balmer ML, Lange FF, Levi CG (1992) Metastable phase selection and partitioning in ZrO2—MgO processed from liquid precursors. J Am Ceram Soc 75(4):946–952CrossRefGoogle Scholar
  27. 27.
    Settu T (2000) Characterisation of MgO–ZrO2 precursor powders prepared by in-situ peptisation of coprecipitated oxalate gel. Ceram Int 26(5):517–521CrossRefGoogle Scholar
  28. 28.
    Gocmez H, Fujimori H (2008) Synthesis and characterization of ZrO2–MgO solid solutions by citrate gel process. Mater Sci Eng, B 148(1):226–229CrossRefGoogle Scholar
  29. 29.
    Angeles-Rosas M, Camacho-López MA, Ruiz-Trejo E (2010) Structure, conductivity and luminescence of 8 mol% scandia-doped zirconia prepared by sol–gel. Solid State Ionics 181(29):1349–1354CrossRefGoogle Scholar
  30. 30.
    Ishigame M, Sakurai T (1977) Temperature dependence of the Raman spectra of ZrO2. J Am Ceram Soc 60(7–8):367–369CrossRefGoogle Scholar
  31. 31.
    Garvie RC, Nicholson PS (1972) Phase analysis in zirconia systems. J Am Ceram Soc 55(6):303–305CrossRefGoogle Scholar
  32. 32.
    Stubican V, Hink RC, Ray SP (1978) Phase equilibria and ordering in the system ZrO2–Y2O3. J Am Ceram Soc 61(1–2):17–21CrossRefGoogle Scholar
  33. 33.
    Liu DW, Perry CH, Wang W, Ingel RP (1987) Low frequency Raman spectra in disordered cubic zirconia at elevated temperatures. J Appl Phys 62:250CrossRefGoogle Scholar
  34. 34.
    Phillippi C, Mazdiyasni K (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54(5):254–258CrossRefGoogle Scholar
  35. 35.
    Rashad M, Baioumy H (2008) Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes. J Mater Process Technol 195(1):178–185CrossRefGoogle Scholar
  36. 36.
    Fujimori H, Yashima M, Sasaki S, Kakihana M, Mori T, Tanaka M, Yoshimura M (2001) Cubic–tetragonal phase change of yttria-doped hafnia solid solution: high-resolution X-ray diffraction and Raman scattering. Chem Phys Lett 346(3):217–223CrossRefGoogle Scholar
  37. 37.
    Arul Dhas N, Patil KC (1993) Properties of magnesia-stabilized zirconia powders prepared by a combustion route. J Mater Sci Lett 12(23):1844–1847CrossRefGoogle Scholar
  38. 38.
    Sakka S (2005) Handbook of sol-gel science and technology. 1. Sol-gel processing, vol 1. Springer Science & Business MediaGoogle Scholar
  39. 39.
    Hajizadeh-Oghaz M, Razavi RS, Khajelakzay M (2015) Optimizing sol–gel synthesis of magnesia-stabilized zirconia (MSZ) nanoparticles using Taguchi robust design for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 73(1):227–241CrossRefGoogle Scholar
  40. 40.
    Rauf A, Yu Q, Jin L, Zhou C (2012) Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying. Scripta Materialia 66(2):109–112CrossRefGoogle Scholar
  41. 41.
    Guo X (1997) Space-charge conduction in yttria and alumina codoped-zirconia 1. Solid State Ionics 96(3):247–254CrossRefGoogle Scholar
  42. 42.
    Ramaswamy P, Seetharamu S, Varma K, Rao K (1999) Evaluation of CaO–CeO2–partially stabilized zirconia thermal barrier coatings. Ceram Int 25(4):317–324CrossRefGoogle Scholar
  43. 43.
    Esparza-Ponce H, Reyes-Rojas A, Antunez-Flores W, Miki-Yoshida M (2003) Synthesis and characterization of spherical calcia stabilized zirconia nano-powders obtained by spray pyrolysis. Mater Sci Eng, A 343(1):82–88CrossRefGoogle Scholar
  44. 44.
    Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42CrossRefGoogle Scholar
  45. 45.
    Shukla A, Sharma V, Dhas NA, Patil K (1996) Oxide-ion conductivity of calcia-and yttria-stabilized zirconias prepared by a rapid-combustion route. Mater Sci Eng, B 40(2):153–157CrossRefGoogle Scholar
  46. 46.
    Arul Dhas N, Patil K (1992) Combustion synthesis and properties of tetragonal, monoclinic, and partially and fully stabilized zirconia powders. Int J Self-Propag High-Temp Synth 1:576–589Google Scholar
  47. 47.
    Viazzi C, Deboni A, Ferreira JZ, Bonino J-P, Ansart F (2006) Synthesis of yttria stabilized zirconia by sol–gel route: influence of experimental parameters and large scale production. Solid State Sci 8(9):1023–1028CrossRefGoogle Scholar
  48. 48.
    Viazzi C, Bonino J-P, Ansart F (2006) Synthesis by sol-gel route and characterization of yttria stabilized zirconia coatings for thermal barrier applications. Surf Coat Technol 201(7):3889–3893CrossRefGoogle Scholar
  49. 49.
    Pin L, Ansart F, Bonino J-P, Le Maoult Y, Vidal V, Lours P (2011) Processing, repairing and cyclic oxidation behaviour of sol–gel thermal barrier coatings. Surf Coat Technol 206(7):1609–1614CrossRefGoogle Scholar
  50. 50.
    Pin L, Ansart F, Bonino J-P, Le Maoult Y, Vidal V, Lours P (2013) Reinforced sol–gel thermal barrier coatings and their cyclic oxidation life. J Eur Ceram Soc 33(2):269–276CrossRefGoogle Scholar
  51. 51.
    Pin L, Vidal V, Blas F, Ansart F, Duluard S, Bonino J-P, Le Maoult Y, Lours P (2014) Optimized sol–gel thermal barrier coatings for long-term cyclic oxidation life. J Eur Ceram Soc 34(4):961–974CrossRefGoogle Scholar
  52. 52.
    Laberty-Robert C, Ansart F, Deloget C, Gaudon M, Rousset A (2001) Powder synthesis of nanocrystallineZrO 2–8% Y 2 O 3 via a polymerization route. Mater Res Bull 36(12):2083–2101CrossRefGoogle Scholar
  53. 53.
    Laberty-Robert C, Ansart F, Castillo S, Richard G (2002) Synthesis of YSZ powders by the sol-gel method: surfactant effects on the morphology. Solid State Sci 4(8):1053–1059CrossRefGoogle Scholar
  54. 54.
    Farhikhteh S, Maghsoudipour A, Raissi B (2010) Synthesis of nanocrystalline YSZ (ZrO 2–8Y 2 O 3) powder by polymerized complex method. J Alloy Compd 491(1):402–405CrossRefGoogle Scholar
  55. 55.
    Petrova N, Todorovsky D (2006) Thermal decomposition of zirconium–yttrium citric complexes prepared in ethylene glycol and water media. Mater Res Bull 41(3):576–589CrossRefGoogle Scholar
  56. 56.
    Hajizadeh-Oghaz M, Razavi RS, Loghman-Estarki MR (2014) Synthesis and characterization of non-transformable tetragonal YSZ nanopowder by means of Pechini method for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 70(1):6–13CrossRefGoogle Scholar
  57. 57.
    Hajizadeh-Oghaz M, Razavi RS, Loghman Estarki MR (2014) Large-scale synthesis of YSZ nanopowder by Pechini method. Bull Mater Sci 37(5):969–973CrossRefGoogle Scholar
  58. 58.
    Oghaz MH, Razavi RS, Loghman-Estark MR, Ghasemi R (2012) Optimization of morphology and particle size of modified sol gel synthesized YSZ nanopowder using Taguchi method. J Nano Res (Trans Tech Publ), 65–70Google Scholar
  59. 59.
    Majedi A, Davar F, Abbasi A (2014) Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem 20(6):4215–4223CrossRefGoogle Scholar
  60. 60.
    Prabhakaran K, Melkeri A, Gokhale N, Sharma S (2007) Synthesis of nanocrystalline 8 mol% yttria stabilized zirconia powder from sucrose derived organic precursors. Ceram Int 33(8):1551–1555CrossRefGoogle Scholar
  61. 61.
    Finar IL (1973) Organic Chemistry, vol I: the fundamental principles, Longman, London, pp. 503–530Google Scholar
  62. 62.
    Gong W, Sha C, Sun D, Wang W (2006) Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings. Surf Coat Technol 201(6):3109–3115CrossRefGoogle Scholar
  63. 63.
    Park S, Kim J, Kim M, Song H, Park C (2005) Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surf Coat Technol 190(2):357–365CrossRefGoogle Scholar
  64. 64.
    Yuan Q, Duan H-H, Li L-L, Sun L-D, Zhang Y-W, Yan C-H (2009) Controlled synthesis and assembly of ceria-based nanomaterials. J Colloid Interface Sci 335(2):151–167CrossRefGoogle Scholar
  65. 65.
    Rezaei M, Alavi S, Sahebdelfar S, Yan Z-F (2009) Synthesis of ceria doped nanozirconia powder by a polymerized complex method. J Porous Mater 16(5):497–505CrossRefGoogle Scholar
  66. 66.
    Reddy BM, Reddy GK, Reddy LH, Ganesh I (2009) Synthesis of nanosized ceria-zirconia solid solutions by a rapid microwave-assisted combustion method. Open Phys Chem J 3(1):24–29CrossRefGoogle Scholar
  67. 67.
    Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J-C (2003) Raman and X-ray photoelectron spectroscopy study of CeO2–ZrO2 and V2O5/CeO2–ZrO2 catalysts. Langmuir 19(7):3025–3030CrossRefGoogle Scholar
  68. 68.
    Martínez-Arias A, Fernández-García M, Ballesteros V, Salamanca L, Conesa J, Otero C, Soria J (1999) Characterization of high surface area Zr–Ce (1: 1) mixed oxide prepared by a microemulsion method. Langmuir 15(14):4796–4802CrossRefGoogle Scholar
  69. 69.
    McBride J, Hass K, Poindexter B, Weber W (1994) Raman and X-ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76(4):2435–2441CrossRefGoogle Scholar
  70. 70.
    Quinelato A et al (2001) Synthesis and sintering of ZrO2–CeO2 powder by use of polymeric precursor based on Pechini process. J Mater Sci 36(15):3825–3830CrossRefGoogle Scholar
  71. 71.
    Tu H, Liu X, Yu Q (2011) Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells. J Power Sources 196(6):3109–3113CrossRefGoogle Scholar
  72. 72.
    Turner C (1991) Sol-gel process-principles and applications. Am Ceram Soc Bull 70(9):1487–1490Google Scholar
  73. 73.
    Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341CrossRefGoogle Scholar
  74. 74.
    Johnson DW Jr (1985) Sol-gel processing of ceramics and glass. Am Ceram Soc Bull 64(12):1597–1602Google Scholar
  75. 75.
    Hajizadeh-Oghaz M, Razavi RS, Ghasemi A (2015) The effect of solution pH value on the morphology of ceria–yttria co stabilized zirconia particles prepared using the polymerizable complex method. J Cluster Sci, 1–15Google Scholar
  76. 76.
    Hajizadeh-Oghaz M, Razavi RS, Ghasemi A (2015) Synthesis and characterization of ceria–yttria co-stabilized zirconia (CYSZ) nanoparticles by sol–gel process for thermal barrier coatings (TBCs) applications. J Sol-Gel Sci Technol 74(3):603–612CrossRefGoogle Scholar
  77. 77.
    Mazaki H, Yasuoka H, Kakihana M, Fujimori H, Yashima M, Yoshimura M (1995) Complex susceptibilities of co-substituted YBa2Cu3O7 synthesized by the polymerized complex method. Physica C 246(1):37–45CrossRefGoogle Scholar
  78. 78.
    Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74CrossRefGoogle Scholar
  79. 79.
    Davar F, Loghman-Estarki MR (2014) Synthesis and optical properties of pure monoclinic zirconia nanosheets by a new precursor. Ceram Int 40(6):8427–8433CrossRefGoogle Scholar
  80. 80.
    Clarke DR (2003) Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf Coat Technol 163:67–74CrossRefGoogle Scholar
  81. 81.
    Ahmaniemi S, Vuoristo P, Mäntylä T, Cernuschi F, Lorenzoni L (2004) Modified thick thermal barrier coatings: thermophysical characterization. J Eur Ceram Soc 24(9):2669–2679CrossRefGoogle Scholar
  82. 82.
    Soyez G, Eastman JA, Thompson LJ, Bai G-R, Baldo PM, McCormick AW, DiMelfi RJ, Elmustafa AA, Tambwe MF, Stone DS (2000) Grain-size-dependent thermal conductivity of nanocrystallineyttria-stabilized zirconia films grown by metal-organic chemical vapor deposition. Appl Phys Lett 77(8):1155–1157CrossRefGoogle Scholar
  83. 83.
    Braginsky L, Shklover V, Hofmann H, Bowen P (2004) High-temperature thermal conductivity of porous Al2O3 nanostructures. Physical review B 70:134201CrossRefGoogle Scholar
  84. 84.
    Klemens PG, Gell M (1998) Thermal conductivity of thermal barrier coatings. Mater Sci Eng, A 245:143–149CrossRefGoogle Scholar
  85. 85.
    Gitzen W (1970) Alumina as a ceramic material, (American Ceramic Society. Westerville, OhioGoogle Scholar
  86. 86.
    Jamali H, Mozafarinia R, Shoja-Razavi R, Ahmadi-Pidani R (2014) Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadium pentoxide and sodium sulfate. J Eur Ceram Soc 34(2):485–492CrossRefGoogle Scholar
  87. 87.
    Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 39(8):8805–8813CrossRefGoogle Scholar
  88. 88.
    Pourbafrani M, Razavi RS, Bakhshi S, Loghman-Estarki M, Jamali H (2015) Effect of microstructure and phase of nanostructured YSZ thermal barrier coatings on its thermal shock behaviour. Surf Eng 31(1):64–73CrossRefGoogle Scholar
  89. 89.
    Hajizadeh-Oghaz M, Razavi RS, Ghasemi A, Valefi Z (2016) Na2SO4 and V2O5 molten salts corrosion resistance of plasma-sprayed nanostructured ceria and yttria co-stabilized zirconia thermal barrier coatings. Ceram Int 42(4):5433–5446CrossRefGoogle Scholar
  90. 90.
    Jones RL (1998) Scandia, yttria-stabilized zirconia for ultra-high temperature thermal barrier coatings. US patent no. 5,780,178Google Scholar
  91. 91.
    Jones RL, Reidy RF, Mess D (1996) Scandia, yttria-stabilized zirconia for thermal barrier coatings. Surf Coat Technol 82(1):70–76CrossRefGoogle Scholar
  92. 92.
    Jones R (1989) Scandia-stabilized zirconia for resistance to molten vanadate-sulfate corrosion. Surf Coat Technol 39:89–96CrossRefGoogle Scholar
  93. 93.
    Leoni M, Jones R, Scardi P (1998) Phase stability of scandia–yttria-stabilized zirconia TBCs. Surf Coat Technol 108:107–113CrossRefGoogle Scholar
  94. 94.
    Jones RL, Mess D (1996) Improved tetragonal phase stability at 1400 C with scandia, yttria-stabilized zirconia. Surf Coat Technol 86:94–101CrossRefGoogle Scholar
  95. 95.
    Jones RL, Williams C (1987) Hot corrosion of CoCrAlY by molten sulfate-vanadate deposits. Mater Sci Eng 87:353–360CrossRefGoogle Scholar
  96. 96.
    Hajizadeh-Oghaz M (2016) PhD thesis, Synthesis and characterization of nanostructured ceria-yttria stabilized zirconia for thermal barrier coatingGoogle Scholar
  97. 97.
    Politova T, Irvine J (2004) Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x(Sc2O3)(11−x)(ZrO2)89. Solid State Ionics 168(1):153–165CrossRefGoogle Scholar
  98. 98.
    Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol 6(1):77–84CrossRefGoogle Scholar
  99. 99.
    Jang J, Dae-Joon K, Lee D (2001) Unusual calcination temperature dependent tetragonalal monoclinic transitions in rare earth-doped zirconia nanocrystals. J Mater Sci 36:5391CrossRefGoogle Scholar
  100. 100.
    Tiwari S, Adhikary J, Singh T, Singh R (2009) Preparation and characterization of sol–gel derived yttria doped zirconia coatings on AISI 316L. Thin Solid Films 517(16):4502–4508CrossRefGoogle Scholar
  101. 101.
    Narayanawamy B, Karaikudi R (2010) Process for the production of plasma sprayable yttria stabilized zirconia (ysz) and plasma sprayable ysz powder produced thereby, US patent no. 0048379 A1Google Scholar
  102. 102.
    Kanade K, Baeg J, Apte S, Prakash T, Kale B (2008) Synthesis and characterization of nanocrystallined zirconia by hydrothermal method. Mater Res Bull 43(3):723–729CrossRefGoogle Scholar
  103. 103.
    Lei Z, Zhu Q, Zhang S (2006) Nanocrystallinescandia-doped zirconia (ScSZ) powders prepared by a glycine–nitrate solution combustion route. J Eur Ceram Soc 26(4):397–401CrossRefGoogle Scholar
  104. 104.
    Singh K, Pathak L, Roy S (2007) Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate–citrate process. Ceram Int 33(8):1463–1468CrossRefGoogle Scholar
  105. 105.
    Yang J, Lian J, Dong Q, Guan Q, Chen J, Guo Z (2003) Synthesis of YSZ nanocrystalline particles via the nitrate–citrate combustion route using diester phosphate (PE) as dispersant. Mater Lett 57(19):2792–2797CrossRefGoogle Scholar
  106. 106.
    Courtin E, Boy P, Rouhet C, Bianchi L, Bruneton E, Poirot N, Laberty-Robert C, Sanchez C (2012) Optimized sol-gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chem Mater 24(23):4540–4548CrossRefGoogle Scholar
  107. 107.
    Zhang Y, Li A, Yan Z, Xu G, Liao C, Yan C (2003) (ZrO2)0.85(REO1.5)0.15(RE = Sc, Y) solid solutions prepared via three Pechini-type gel routes: 1—gel formation and calcination behaviors. J Solid State Chem 171(1):434–438CrossRefGoogle Scholar
  108. 108.
    Zhang Y-W, Yan Z-G, Liao F-H, Liao C-S, Yan C-H (2004) Citrate gel synthesis and characterization of (ZrO2)0.85(REO1.5)0.15(RE = Y, Sc) solid solutions. Mater Res Bull 39(11):1763–1777Google Scholar
  109. 109.
    Zyryanov V, Uvarov N, Sadykov V, Ulihin A, Kostrovskii V, Ivanov V, Titov A, Paichadze K (2009) Mechanochemical synthesis and conducting properties of nanostructured rhombohedralscandia stabilized zirconia ceramics. J Alloy Compd 483(1):535–539CrossRefGoogle Scholar
  110. 110.
    Fontaine O, Laberty-Robert C, Sanchez C (2012) Sol-gel route to zirconia–pt-nanoelectrode arrays 8 nm in radius: their geometrical impact in mass transport. Langmuir 28(7):3650–3657CrossRefGoogle Scholar
  111. 111.
    ShojaRazavi R, Loghman-Estarki MR, Farhadi-Khouzani M (2012) Synthesis and characterization of ZnO nano-structures by polymeric precursor route. Acta Physica Polonica-Ser A Gen Phys 121(1):98–101CrossRefGoogle Scholar
  112. 112.
    Gaudon M, Laberty-Robert C, Ansart F, Stevens P (2006) Thick YSZ films prepared via a modified sol–gel route: thickness control (8–80 μm). J Eur Ceram Soc 26(15):3153–3160CrossRefGoogle Scholar
  113. 113.
    Loghman-Estark MR, Razavi RS, Edris H (2013) Synthesis and thermal stability of nontransformable tetragonal (ZrO2)0.96(REO1.5)0.04(Re = Sc3+, Y3+) Nanocrystals. Defect and Diffusion Forum. Trans Tech Publ, pp 60–64Google Scholar
  114. 114.
    Jamali H, Mozafarinia R, ShojaRazavi R, Ahmadi-Pidani R, Reza Loghman-Estarki M (2012) Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings. Curr Nanosci 8(3):402–409CrossRefGoogle Scholar
  115. 115.
    Loghman-Estarki MR, Edris H, Razavi RS (2013) Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating. Ceram Int 39(7):7817–7829CrossRefGoogle Scholar
  116. 116.
    Loghman-Estarki MR, ShojaRazavi R, Edris H (2013) Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating. Ceram Int 39:7817–7829CrossRefGoogle Scholar
  117. 117.
    Loghman-Estarki MR, Hajizadeh-Oghaz M, Edris H, Razavi RS (2013) Comparative studies on synthesis of nanocrystalline Sc2O3–Y2O3 doped zirconia (SYDZ) and YSZ solid solution via modified and classic Pechini method. Cryst Eng Commun 15:5898–5909CrossRefGoogle Scholar
  118. 118.
    Srinivasan R, De Angelis RJ, Ice G, Davis BH (1991) Identification of tetragonal and cubic structures of zirconia using synchrotron x-radiation source. J Mater Res 6(06):1287–1292CrossRefGoogle Scholar
  119. 119.
    Srivastava KK, Patil RN, Choudhary CB, Gokhale KVGK, Subba Rao EC (1974) Martensitic transformation in zirconia. Trans Brit Ceram Soc 73:85–91Google Scholar
  120. 120.
    Barberis P, Merle-Méjean T, Quintard P (1997) On Raman spectroscopy of zirconium oxide films, J Nucl Mater 246(2–3):232–243Google Scholar
  121. 121.
    Li M, Feng Z, Xiong G, Ying P, Xin Q, Li C (2001) Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J Phys Chem B 105(34):8107–8111CrossRefGoogle Scholar
  122. 122.
    Phillippi CM, Mazdyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54(5):254–258CrossRefGoogle Scholar
  123. 123.
    Iwamoto N, Umesaki N, Endo S (1985) Characterization of plasma-sprayed zirconia coatings by X-ray diffraction and Raman spectroscopy. Thin Sol Films 127:129–138CrossRefGoogle Scholar
  124. 124.
    Phillippi CM, Mazdiyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54:254–258CrossRefGoogle Scholar
  125. 125.
    Costa G, Muccillo R (2010) Comparative studies on properties of scandia-stabilized zirconia synthesized by the polymeric precursor and the polyacrylamide techniques. J Alloy Compd 503(2):474–479CrossRefGoogle Scholar
  126. 126.
    Sánchez C, Doria J, Paucar C, Hernandez M, Mósquera A, Rodríguez J, Gómez A, Baca E, Morán O (2010) Nanocystalline ZnO films prepared via polymeric precursor method (Pechini). Physica B 405(17):3679–3684CrossRefGoogle Scholar
  127. 127.
    ShojaRazavi R, Loghman-Estarki MR, Farhadi-Khouzani M, Barekat M, Jamali H (2011) Large scale synthesis of zinc oxide nano- and submicro-structure by Pechini’s method: effect of ethylene glycol/citric acid mole ratio on structural and optical properties. Curr Nanosci 7:807–812CrossRefGoogle Scholar
  128. 128.
    Yu H-F, Huang K-C (2003) Effects of pH and citric acid contents on characteristics of ester-derived BaFe12O19 powder. J Magn Magn Mater 260(3):455–461CrossRefGoogle Scholar
  129. 129.
    Thangaraju D, Samuel P, Babu SM (2010) Growth of two-dimensional KGd(WO4)2 nanorods by modified sol–gel Pechini method. Opt Mater 32(10):1321–1324CrossRefGoogle Scholar
  130. 130.
    Kazemi F, Saberi A, Malek-Ahmadi S, Sohrabi S, Rezaie H, Tahriri M (2011) novel method for synthesis of metastable tetragonal zirconia nanopowders at low temperatures. Ceram Silik 55(1):26–30Google Scholar
  131. 131.
    Loghman-Estarki M, Razavi RS, Edris H, Bakhshi S, Nejati M, Jamali H (2016) Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings in the presence of molten sulfate and vanadate salt. Ceram Int. doi: 10.1016/j.ceramint.2016.01.147 Google Scholar
  132. 132.
    Zhou CH, Zhang ZY, Zhang QM, Li Y (2014) Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings. Mater Corros 65(6):613–619CrossRefGoogle Scholar
  133. 133.
    Eastman J, Choi U, Li S, Soyez G, Thompson L, DiMelfi R IV (1984) Properties-4. Other-novel thermal properties of nanostructured materials. materials science forum, 1999. Aedermannsdorf, Trans Tech Publications, Switzerland, pp 629–634Google Scholar
  134. 134.
    Yang H-S, Bai G-R, Thompson L, Eastman J (2002) Interfacial thermal resistance in nanocrystallineyttria-stabilized zirconia. Acta Mater 50(9):2309–2317CrossRefGoogle Scholar
  135. 135.
    Jamali H, Mozafarinia R, Razavi RS, Ahmadi-Pidani R (2012) Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceram Int 38(8):6705–6712CrossRefGoogle Scholar
  136. 136.
    Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2012) Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt. Ceram Int 38(8):6613–6620CrossRefGoogle Scholar
  137. 137.
    Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2012) Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification. Opt Lasers Eng 50(5):780–786CrossRefGoogle Scholar
  138. 138.
    Narimani N, Saremi M, (2015) A study on the oxidation resistance of electrodeposited and nanostructured YSZ thermal barrier ceramic coatings. Ceram Int Part A 41(10):13810–13816Google Scholar
  139. 139.
    Loghman-Estarki MR, Razavi RS, Edris H, Jamali H (2014) Life time of new SYSZ thermal barrier coatings produced by plasma spraying method under thermal shock test and high temperature treatment. Ceram Int 40(1):1405–1414tCrossRefGoogle Scholar
  140. 140.
    Bernard B, Bianchi L, Malié A, Joulia A, Rémy B (2016) Columnar suspension plasma sprayed coating microstructural control for thermal barrier coating application. J Eur Ceram Soc 36(4):1081–1089Google Scholar
  141. 141.
    Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Laser surface modification of plasma sprayed CYSZ thermal barrier coatings. Ceram Int 39(3):2473–2480CrossRefGoogle Scholar
  142. 142.
    Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, Jamali H (2014) Improving the hot corrosion resistance of plasma sprayed ceria–yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Mater Des 57:336–341CrossRefGoogle Scholar
  143. 143.
    Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2013) Laser glazing of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram Int 39(8):9483–9490CrossRefGoogle Scholar
  144. 144.
    Loghman-Estarki MR, Nejati M, Edris H, Razavi RS, Jamali H, Pakseresht AH (2015) Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt. J Eur Ceram Soc 35(2):693–702CrossRefGoogle Scholar
  145. 145.
    Ghasemi R, Shoja-Razavi R, Mozafarinia R, Jamali H (2014) The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram Int 40(1):347–355CrossRefGoogle Scholar
  146. 146.
    Ghasemi R, ShojaRazavi R, Mozafarinia R, Jamali H, Hajizadeh-Oghaz M, Ahmadi-Pidani R (2014) The influence of laser treatment on hot corrosion behavior of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. J Eur Ceram Soc 34(8):2013–2021CrossRefGoogle Scholar
  147. 147.
    Jamali H, Mozafarinia R, ShojaRazavi R, AhmadiPidani R (2012) Investigation of thermal shock behavior of plasma-sprayed NiCoCrAlY/YSZ thermal barrier coatings. Adv Mater Res (Trans Tech Publ) 246–250Google Scholar
  148. 148.
    Ahmadi PR, Razavi R, Mozafarinia R, Jamali H (2012) characterization of ceria and yttria stabilized zirconia thermal barrier coatings on in 738 superalloy, Iran J Surf Sci Eng 16:33–34Google Scholar
  149. 149.
    Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, Miranzo P, Osendi MI (2002) Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 85(12):3031–3035CrossRefGoogle Scholar
  150. 150.
    AruláDhas N (1993) Combustion synthesis and properties of fine-particle rare-earth-metal zirconates, Ln2Zr2O7. J Mater Chem 3(12):1289–1294CrossRefGoogle Scholar
  151. 151.
    Jinet L et al (2015) Adhesion strength and thermal shock properties of nanostructured 5La3TiYSZ, 8LaYSZ and 8CeYSZ coatings prepared by atmospheric plasma spraying. Ceram Int Part B 41(9):12099–12106CrossRefGoogle Scholar
  152. 152.
    Wang X, Zhu Y, Zhang W (2010) Preparation of lanthanum zirconate nano-powders by Molten salts method. J Non-Cryst Solids 356(20):1049–1051CrossRefGoogle Scholar
  153. 153.
    Mao Y, Guo X, Huang JY, Wang KL, Chang JP (2009) Luminescent nanocrystals with A2B2O7 composition synthesized by a kinetically modified molten salt method. J Phys Chem C 113(4):1204–1208CrossRefGoogle Scholar
  154. 154.
    Subramanian M, Aravamudan G, Rao GS (1983) Oxide pyrochlores—a review. Prog Solid State Chem 15(2):55–143CrossRefGoogle Scholar
  155. 155.
    Afrasiabi A, Saremi M, Kobayashi A (2008) A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3. Mater Sci Eng, A 478(1):264–269CrossRefGoogle Scholar
  156. 156.
    Djurado E, Bouvier P, Lucazeau G (1952) J Am Ceram Soc 35:107CrossRefGoogle Scholar
  157. 157.
    Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243CrossRefGoogle Scholar
  158. 158.
    Gocmez H (2006) The interaction of organic dispersant with alumina: A molecular modelling approach. Ceram Int 32(5):521–525CrossRefGoogle Scholar
  159. 159.
    Deb A, Chatterjee P, Gupta SS (2007) Synthesis and microstructural characterization of α-Al2O3–t-ZrO2 composite powders prepared by combustion technique. Mater Sci Eng, A 459(1):124–131CrossRefGoogle Scholar
  160. 160.
    Gocmez H, Fujimori H, Tuncer M, Gokyer Z, Duran C (2010) The preparation and characterization of Al2O3/ZrO2 nanocrystalline composite by a simple gel method. Mater Sci Eng, B 173(1):80–83CrossRefGoogle Scholar
  161. 161.
    Saremi M, Valefi Z, Abaeian N (2013) Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ–Alumina composite coatings produced by plasma spray method. Surf Coat Technol 221:133–141CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Reza Shoja Razavi
    • 1
    Email author
  • Mohammad Reza Loghman-Estarki
    • 1
  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations