From Fuzzy to Annotated Semantic Web Languages

Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9885)

Abstract

The aim of this chapter is to present a detailed, self-contained and comprehensive account of the state of the art in representing and reasoning with fuzzy knowledge in Semantic Web Languages such as triple languages RDF/RDFS, conceptual languages of the OWL 2 family and rule languages. We further show how one may generalise them to so-called annotation domains, that cover also e.g. temporal and provenance extensions.

References

  1. 1.
    Straccia, U.: Managing uncertainty and vagueness in description logics, logic programs and description logic programs. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 54–103. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85658-0_2 CrossRefGoogle Scholar
  2. 2.
    Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies in Informatics Series. Chapman & Hall, London (2013)MATHGoogle Scholar
  3. 3.
    OWL 2 Web Ontology Language Document Overview. W3C (2009). http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
  4. 4.
    Hayes, P.: RDF Semantics, W3C Recommendation, February 2004. http://www.w3.org/TR/rdf-mt
  5. 5.
    http://ruleml.org/index.html. The rule markup initiative
  6. 6.
    Calì, A., Gottlob, G., Lukasiewicz, T.: Datalog \(\pm \): a unified approach to ontologies and integrity constraints. In: Proceedings of the 12th International Conference on Database Theory, pp. 14–30. ACM, New York (2009). ISBN 978-1-60558-423-2. doi:10.1145/1514894.1514897
  7. 7.
    Rule Interchange Format (RIF). W3C (2011). http://www.w3.org/2001/sw/wiki/RIF
  8. 8.
  9. 9.
    Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72667-8_6 CrossRefGoogle Scholar
  10. 10.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  11. 11.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)MATHCrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001). ISSN 1012-2443MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Can we enforce full compositionality in uncertainty calculi? In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI 1994), Seattle, Washington, pp. 149–154 (1994)Google Scholar
  15. 15.
    Straccia, U.: A minimal deductive system for general fuzzy RDF. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 166–181. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05082-4_12 CrossRefGoogle Scholar
  16. 16.
    Straccia, U., Lopes, N., Lukacsy, G., Polleres, A.: A general framework for representing and reasoning with annotated semantic web data. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1437–1442. AAAI Press (2010)Google Scholar
  17. 17.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for thesemantic web. J. Web Semant. 6, 291–308 (2008)CrossRefGoogle Scholar
  18. 18.
    Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)MathSciNetMATHGoogle Scholar
  19. 19.
    Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, (IPMU 2006), pp. 2238–2245. E.D.K., Paris (2006). ISBN 2-84254-112-XGoogle Scholar
  20. 20.
    Damasio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: Representing uncertainty rules in RuleMl. Fundam. Inform. 82(3), 265–288 (2008)MATHGoogle Scholar
  21. 21.
    Ragone, A., Straccia, U., Noia, T.D., Sciascio, E.D., Donini, F.M.: Fuzzy matchmaking in e-market places of peer entities using datalog. Fuzzy Sets Syst. 160(2), 251–268 (2009)CrossRefGoogle Scholar
  22. 22.
    Straccia, U.: Query answering in normal logic programs under uncertainty. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 687–700. Springer, Heidelberg (2005). doi:10.1007/11518655_58 CrossRefGoogle Scholar
  23. 23.
    Straccia, U.: Uncertainty management in logic programming: simple and effective top-down query answering. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 753–760. Springer, Heidelberg (2005). doi:10.1007/11552451_103 CrossRefGoogle Scholar
  24. 24.
    Straccia, U.: Fuzzy description logic programs. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-BasedSystems, (IPMU 2006), pp. 1818–1825. E.D.K., Paris (2006). ISBN 2-84254-112-XGoogle Scholar
  25. 25.
    Straccia, U.: Towards top-k query answering in deductive databases. In: Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics (SMC 2006), pp. 4873–4879. IEEE (2006)Google Scholar
  26. 26.
    Lopes, N., Zimmermann, A., Hogan, A., Lukacsy, G., Polleres, A., Straccia, U., Decker, S.: RDF needs annotations. In: Proceedings of W3C Workshop – RDF Next Steps (2010).http://www.w3.org/2009/12/rdf-ws/
  27. 27.
    Lopes, N., Polleres, A., Straccia, U., Zimmermann, A.: AnQL: SPARQLing up annotated RDFS. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 518–533. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17746-0_33 CrossRefGoogle Scholar
  28. 28.
    Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for representing, reasoning and querying with annotated semantic web data. J. Web Semant. 11, 72–95 (2012)CrossRefGoogle Scholar
  29. 29.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, New York (1980)MATHGoogle Scholar
  30. 30.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall Inc., Upper Saddle River (1995). ISBN 0-13-101171-5MATHGoogle Scholar
  31. 31.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic – Studia Logica Library. Kluwer Academic Publishers, New York (2000)Google Scholar
  32. 32.
    Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHCrossRefGoogle Scholar
  34. 34.
    Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, 2nd edn. Kluwer, Dordrecht (2001)Google Scholar
  35. 35.
    Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and itsapplications. J. Logic Program. 12, 335–367 (1992)CrossRefGoogle Scholar
  36. 36.
    Marin, D.: A formalization of RDF. Technical report TR/DCC-2006-8, Department of Computer Science, Universidad de Chile (2004). http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf
  37. 37.
    RDF Semantics, W3C (2004). http://www.w3.org/TR/rdf-mt/
  38. 38.
    Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-store: a vertically partitioned DBMS for semantic web data management. VLDB J. 18(2), 385–406 (2009)CrossRefGoogle Scholar
  39. 39.
    Buneman, P., Kostylev, E.: Annotation algebras for RDFS. In: The Second International Workshop on the Role of Semantic Web in Provenance Management (SWPM 2010). CEUR Workshop Proceedings (2010)Google Scholar
  40. 40.
    Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A rule system for querying persistent RDFS data. In: The Semantic Web: Research and Applications, 6th European Semantic Web Conference (ESWC 2009), pp. 857–862 (2009)Google Scholar
  41. 41.
    Bobillo, F., Cerami, M., Esteva, F., García-Cerdaña, À., Peñaloza, R., Straccia, U.: Fuzzy description logics in the framework of mathematical fuzzylogic. In: Petr Cintula, C.N., Fermüller, C. (eds.) Handbook of Mathematical Fuzzy Logic, vol. 3. Studies in Logic Studies in Logic, Mathematical Logic and Foundations, vol. 58, pp. 1105–1181. College Publications, London (2015). Chapter 16, ISBN 978-1-84890-193-3Google Scholar
  42. 42.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: DeLorean: a reasoner for fuzzy OWL 1.1. In: Proceedings of the 4th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2008). CEUR Workshop Proceedings, vol. 423, 2008. ISSN 1613-0073Google Scholar
  43. 43.
    Bobillo, F., Straccia, U.: On qualified cardinality restrictions in fuzzy description logics under Lukasiewicz semantics. In: Magdalena, L., Ojeda-Aciego, M., Verdegay, J.L. (eds.), Proceedings of the 12th International Conference of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), pp. 1008–1015, June 2008Google Scholar
  44. 44.
    Bobillo, F., Straccia, U.: Extending datatype restrictions in fuzzy description logics. In: Proceedings of the 9th International Conference on Intelligent Systems Design and Applications (ISDA 2009), pp. 785–790. IEEE Computer Society (2009)Google Scholar
  45. 45.
    Bobillo, F., Straccia, U.: Fuzzy description logics with fuzzy truth values. In: Carvalho, J.P.B., Dubois, D., Kaymak, U., Sousa, J.M.C. (eds.), Proceedings of the 13th World Congress of the International Fuzzy Systems Association and 6th Conference of the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT 2009), pp. 189–194, July 2009. ISBN 978-989-95079-6-8Google Scholar
  46. 46.
    Bobillo, F., Straccia, U.: Supporting fuzzy rough sets in fuzzy description logics. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS (LNAI), vol. 5590, pp. 676–687. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02906-6_58 CrossRefGoogle Scholar
  47. 47.
    Dubois, D., Mengin, J., Prade, H.: Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion. In: Sanchez, E. (ed.) Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, Amsterdam (2006)Google Scholar
  48. 48.
    Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the semantic web. In: Second International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML 2006), pp. 89–96. IEEE Computer Society (2006)Google Scholar
  49. 49.
    Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics forthe semantic web. Fundamenta Informaticae 82(3), 289–310 (2008)MathSciNetMATHGoogle Scholar
  50. 50.
    Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 187–198. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1_19 CrossRefGoogle Scholar
  51. 51.
    Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72982-2_23 CrossRefGoogle Scholar
  52. 52.
    Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness for the semantic web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 16–30. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75410-7_2 CrossRefGoogle Scholar
  53. 53.
    Lukasiewicz, T., Straccia, U.: Tightly coupled fuzzy description logic programs under the answer set semantics for the semantic web. Int. J. Semant. Web, Inf. Syst. 4(3), 68–89 (2008)CrossRefGoogle Scholar
  54. 54.
    Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and fuzzy vagueness. Int. J. Approx. Reason. 50(6), 837–853 (2009)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Sanchez, D., Tettamanzi, A.G.: Generalizing quantification in fuzzy description logics. In: Proceedings 8th Fuzzy Days in Dortmund (2004)Google Scholar
  56. 56.
    Sánchez, D., Tettamanzi, A.G.B.: Reasoning and quantification in fuzzy description logics. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 81–88. Springer, Heidelberg (2006). doi:10.1007/11676935_10 CrossRefGoogle Scholar
  57. 57.
    Sanchez, D., Tettamanzi, A.G.: Fuzzy quantification in fuzzy description logics. In: Sanchez, E. (ed.) Capturing Intelligence: Fuzzy Logic and the Semantic Web. Elsevier, Amsterdam (2006)Google Scholar
  58. 58.
    Stoilos, G., Stamou, G.: Extending fuzzy description logics for the semantic web. In: 3rd International Workshop of OWL: Experiences and Directions (2007). http://www.image.ece.ntua.gr/publications.php
  59. 59.
    Straccia, U.: A fuzzy description logic. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998), Madison, USA, pp. 594–599 (1998)Google Scholar
  60. 60.
    Straccia, U.: Description logics with fuzzy concrete domains. In: Bachus, F., Jaakkola, T. (eds.), 21st Conference on Uncertainty in Artificial Intelligence (UAI 2005), pp. 559–567. AUAI Press, Edinburgh (2005)Google Scholar
  61. 61.
    Straccia, U.: Fuzzy ALC with fuzzy concrete domains. In: Proceedings of the International Workshop on Description Logics (DL 2005), pp. 96–103. CEUR, Edinburgh (2005)Google Scholar
  62. 62.
    Straccia, U.: Fuzzy description logic programs. In: Bouchon-Meunier, C.M.B., Yager, R.R., Rifqi, M. (eds.) Uncertainty and Intelligent Information Systems, pp. 405–418. World Scientific, Singapore (2008). ISBN 978-981-279-234-1. Chap. 29CrossRefGoogle Scholar
  63. 63.
    Venetis, T., Stoilos, G., Stamou, G., Kollias, S.: f-DLPs: extending description logic programs with fuzzy sets and fuzzy logic. In: IEEE International Conference on Fuzzy Systems (Fuzz-IEEE 2007) (2007). http://www.image.ece.ntua.gr/publications.php
  64. 64.
    Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), Sydney, Australia, pp. 472–477 (1991)Google Scholar
  65. 65.
    Bobillo, F., Straccia, U.: fuzzyDL: an expressive fuzzy description logic reasoner. In: 2008 International Conference on Fuzzy Systems (FUZZ 2008), pp. 923–930. IEEE Computer Society (2008)Google Scholar
  66. 66.
    Bobillo, F., Straccia, U.: Finite fuzzy description logics: a crisp representation for finite fuzzy \(\cal{ALCH}\). In: Bobillo, F., Carvalho, R., da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Martin, T., Nickles, M., Pool, M. (eds.) Proceedings of the 6th ISWC Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2010). CEUR Workshop Proceedings, vol. 654, pp. 61–72, November 2010. ISSN 1613-0073Google Scholar
  67. 67.
    Bobillo, F., Straccia, U.: Aggregation operators and fuzzy OWL 2. In: Proceedings of the 20th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 1727–1734. IEEE Press, June 2011Google Scholar
  68. 68.
    Bobillo, F., Straccia, U.: Fuzzy ontologies and fuzzy integrals. In: Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), pp. 1311–1316. IEEE Press, November 2011Google Scholar
  69. 69.
    Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approx. Reason. 52, 1073–1094 (2011)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Bobillo, F., Straccia, U.: Generalized fuzzy rough description logics. Inf. Sci. 189, 43–62 (2012)MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Bobillo, F., Straccia, U.: Aggregation operators for fuzzy ontologies. Appl. Soft Comput. 13(9), 3816–3830 (2013). ISSN 1568-4946CrossRefGoogle Scholar
  72. 72.
    Bobillo, F., Straccia, U.: General concept inclusion absorptions for fuzzy description logics: a first step. In: Proceedings of the 26th International Workshop on Description Logics (DL 2013). CEUR Workshop Proceedings, vol. 1014, pp. 513–525. CEUR-WS.org (2013). http://ceur-ws.org/Vol-1014/paper_3.pdf
  73. 73.
    Dinh-Khac, D., Hölldobler, S., Tran, D.-K.: The fuzzy linguistic description logic \(\cal{ALC}_{FL}\). In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), pp. 2096–2103. E.D.K., Paris (2006). ISBN 2-84254-112-XGoogle Scholar
  74. 74.
    Hölldobler, S., Khang, T.D., Störr, H.-P.: A fuzzy description logic with hedges as concept modifiers. In: Phuong, N.H., Nguyen, H.T., Ho, N.C., Santiprabhob, P. (eds.) Proceedings InTech/VJFuzzy 2002, pp. 25–34. Institute of Information Technology, Vietnam Center for Natural Science and Technology, Science and Technics Publishing House, Hanoi (2002)Google Scholar
  75. 75.
    Hölldobler, S., Nga, N.H., Khang, T.D.: The fuzzy description logic \(\cal{ALC}_{FH}\). In: Proceedings of the International Workshop on Description Logics (DL 2005) (2005)Google Scholar
  76. 76.
    Hölldobler, S., Störr, H.-P., Khang, T.D.: The fuzzy description logic \(\cal{ALC}_{FH}\) with hedge algebras as concept modifiers. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 7(3), 294–305 (2003). doi:10.20965/jaciii.2003.p0294 Google Scholar
  77. 77.
    Hölldobler, S., Störr, H.-P., Khang, T.D.: A fuzzy description logic with hedges and concept modifiers. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004) (2004)Google Scholar
  78. 78.
    Hölldobler, S., Störr, H.-P., Khang, T.D.: The subsumption problem of the fuzzy description logic \(\cal{ALC}_{FH}\). In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004) (2004)Google Scholar
  79. 79.
    Jiang, Y., Liu, H., Tang, Y., Chen, Q.: Semantic decision making using ontology-based soft sets. Math. Comput. Modell. 53(5–6), 1140–1149 (2011)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Jiang, Y., Tang, Y., Chen, Q., Wang, J., Tang, S.: Extending soft sets with description logics. Comput. Math. Appl. 59(6), 2087–2096 (2010). ISSN 0898-1221. http://dx.doi.org/10.1016/j.camwa.2009.12.014 MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Jiang, Y., Tang, Y., Wang, J., Deng, P., Tang, S.: Expressive fuzzy description logics over lattices. Knowl.-Based Syst. 23, 150–161 (2010). ISSN 0950-7051. http://dx.doi.org/10.1016/j.knosys.2009.11.002 CrossRefGoogle Scholar
  82. 82.
    Jiang, Y., Tang, Y., Wang, J., Tang, S.: Reasoning within intuitionistic fuzzy rough description logics. Inf. Sci. 179, 2362–2378 (2009)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Jiang, Y., Tang, Y., Wang, J., Tang, S.: Representation and reasoning of context-dependant knowledge in distributed fuzzy ontologies. Expert Syst. Appl. 37(8), 6052–6060 (2010). ISSN 0957-4174. http://dx.doi.org/10.1016/j.eswa.2010.02.122 CrossRefGoogle Scholar
  84. 84.
    Jiang, Y., Wang, J., Deng, P., Tang, S.: Reasoning within expressive fuzzy rough description logics. Fuzzy Sets Syst. 160(23), 3403–3424 (2009). doi:10.1016/j.fss.2009.01.004 MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Jiang, Y., Wang, J., Tang, S., Xiao, B.: Reasoning with rough description logics: an approximate concepts approach. Inf. Sci. 179(5), 600–612 (2009). ISSN 0020-0255MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Kang, B., Xu, D., Lu, J., Li, Y.: Reasoning for a fuzzy description logic with comparison expressions. In: Proceedings of the International Workshop on Description Logics (DL 2006). CEUR Workshop Proceedings (2006)Google Scholar
  87. 87.
    Mailis, T., Stoilos, G., Stamou, G.: Expressive reasoning with horn rules and fuzzy description logics. In: Marchiori, M., Pan, J.Z., Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 43–57. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72982-2_4 CrossRefGoogle Scholar
  88. 88.
    Straccia, U.: Towards spatial reasoning in fuzzy description logics. In: 2009 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2009), pp. 512–517. IEEE Computer Society (2009)Google Scholar
  89. 89.
    Tresp, C., Molitor, R.: A description logic for vague knowledge. In: Proceedings of the 13th European Conference on Artificial Intelligence (ECAI 1998), Brighton, England, August 1998Google Scholar
  90. 90.
    Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics under Gödel semantics. Int. J. Approx. Reason. 50(3), 494–514 (2009)MATHCrossRefGoogle Scholar
  91. 91.
    Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: Proceedings of the IEEE International Conference on Fuzzy Systems (Fuzz-IEEE 2007), pp. 652–657. IEEE Computer Society (2007)Google Scholar
  92. 92.
    Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets Syst. 160(23), 3382–3402 (2009)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Hájek, P.: Making fuzzy description logics more general. Fuzzy Sets Syst. 154(1), 1–15 (2005)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Hájek, P.: What does mathematical fuzzy logic offer to description logic? In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, pp. 91–100. Elsevier, Amsterdam (2006). Chap. 5CrossRefGoogle Scholar
  95. 95.
    Straccia, U.: Uncertainty in description logics: a lattice-based approach. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 251–258 (2004)Google Scholar
  96. 96.
    Straccia, U.: Uncertainty and description logic programs over lattices. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, pp. 115–133. Elsevier, Amsterdam (2006). Chap. 7CrossRefGoogle Scholar
  97. 97.
    Straccia, U.: Description logics over lattices. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 14(1), 1–16 (2006)MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Baader, F., Peñaloza, R.: Are fuzzy description logics with general concept inclusion axioms decidable? In: Proceedings of 2011 IEEE International Conference on Fuzzy Systems (Fuzz-IEEE 2011). IEEE Press (2011)Google Scholar
  99. 99.
    Baader, F., Peñaloza, R.: GCIs make reasoning in fuzzy DLs with the product t-norm undecidable. In: Proceedings of the 24th International Workshop on Description Logics (DL 2011). CEUR Electronic Workshop Proceedings (2011)Google Scholar
  100. 100.
    Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in some fuzzy description logics. Fuzzy Sets Syst. 172(1), 1–12 (2011)MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy \(\cal{SHOIN}\) with fuzzy nominals and general concept inclusions. In: Proceedings of the 2nd Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2006), November 2006Google Scholar
  102. 102.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy \(\cal{SHOIN}\) with fuzzy nominals and general concept inclusions. In: Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 174–188. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89765-1_11 CrossRefGoogle Scholar
  103. 103.
    Bobillo, F., Delgado, M., Gómez-Romero, J.: Optimizing the crisp representation of the fuzzy description logic \(\cal{SROIQ}\). In: Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS (LNAI), vol. 5327, pp. 189–206. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89765-1_12 CrossRefGoogle Scholar
  104. 104.
    Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Joining Gödel and Zadeh fuzzy logics in fuzzy description logics. Int. J. Uncertainty, Fuzziness Knowl.-Based Syst. 20, 475–508 (2012)MATHCrossRefGoogle Scholar
  105. 105.
    Bobillo, F., Straccia, U.: Towards a crisp representation of fuzzy description logics under Łukasiewicz semantics. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS (LNAI), vol. 4994, pp. 309–318. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68123-6_34 CrossRefGoogle Scholar
  106. 106.
    Bobillo, F., Straccia, U.: Reasoning with the finitely many-valued Lukasiewicz fuzzy description logic \(\cal{SROIQ}\). Inf. Sci. 181, 758–778 (2011)MATHCrossRefGoogle Scholar
  107. 107.
    Bobillo, F., Straccia, U.: Finite fuzzy description logics and crisp representations. In: Bobillo, F., et al. (eds.) UniDL/URSW 2008-2010. LNCS (LNAI), vol. 7123, pp. 99–118. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35975-0_6 CrossRefGoogle Scholar
  108. 108.
    Bobillo, F., Straccia, U.: A MILP-based decision procedure for the (fuzzy) description logic \(\cal{ALCB}\). In: Proceedings of the 27th International Workshop on Description Logics (DL 2014), vol. 1193, pp. 378–390. CEUR Workshop Proceedings, ISSN 1613-0073, July 2014Google Scholar
  109. 109.
    Bobillo, F., Straccia, U.: On partitioning-based optimisations in expressive fuzzy description logics. In: Proceedings of the 24th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015). IEEE Press, August 2015. doi:10.1109/FUZZ-IEEE.2015.7337838
  110. 110.
    Bobillo, F., Straccia, U.: Optimising fuzzy description logic reasoners with general concept inclusions absorption. Fuzzy Sets Syst. 292, 98–129 (2016). http://dx.doi.org/10.1016/j.fss.2014.10.029 MathSciNetCrossRefGoogle Scholar
  111. 111.
    Bonatti, P.A., Tettamanzi, A.G.B.: Some complexity results on fuzzy description logics. In: Gesú, V., Masulli, F., Petrosino, A. (eds.) WILF 2003. LNCS (LNAI), vol. 2955, pp. 19–24. Springer, Heidelberg (2006). doi:10.1007/10983652_3 CrossRefGoogle Scholar
  112. 112.
    Borgwardt, S., Distel, F., Peñaloza, R.: How fuzzy is my fuzzy description logic? In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 82–96. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_9 CrossRefGoogle Scholar
  113. 113.
    Borgwardt, S., Distel, F., Peñaloza, R.: Non-Gödel negation makes unwitnessed consistency undecidable. In: Proceedings of the 2012 International Workshop on Description Logics (DL 2012), vol. 846. CEUR-WS.org (2012)Google Scholar
  114. 114.
    Borgwardt, S., Peñaloza, R.: Description logics over lattices with multi-valued ontologies. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 768–773 (2011)Google Scholar
  115. 115.
    Borgwardt, S., Peñaloza, R.: Finite lattices do not make reasoning in \(\cal{ALCI}\) harder. In: Proceedings of the 7th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2011), vol. 778, pp. 51–62. CEUR-WS.org (2011)Google Scholar
  116. 116.
    Borgwardt, S., Peñaloza, R.: Fuzzy ontologies over lattices with t-norms. In: Proceedings of the 24th International Workshop on Description Logics (DL 2011). CEUR Electronic Workshop Proceedings (2011)Google Scholar
  117. 117.
    Borgwardt, S., Peñaloza, R.: A tableau algorithm for fuzzy description logics over residuated De Morgan lattices. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 9–24. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33203-6_3 CrossRefGoogle Scholar
  118. 118.
    Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 232–242. AAAI Press, Rome (2012)Google Scholar
  119. 119.
    Bou, F., Cerami, M., Esteva, F.: Finite-valued Lukasiewicz modal logic is PSPACE-complete. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 774–779 (2011)Google Scholar
  120. 120.
    Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-valued product logic. In: Proceedings of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press (2010)Google Scholar
  121. 121.
    Cerami, M., Straccia, U.: On the undecidability of fuzzy description logics with GCIs with lukasiewicz t-norm. Technical report, Computing Research Repository (2011). Available as CoRR technical report at http://arxiv.org/abs/1107.4212
  122. 122.
    Cerami, M., Straccia, U.: Undecidability of KB satisfiability for l-\(\cal{ALC}\) with GCIs, July 2011. Unpublished manuscriptGoogle Scholar
  123. 123.
    Fernando Bobillo, U.S.: Reducing the size of the optimization problems in fuzzy ontology reasoning. In: Proceedings of the 11th International Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2015). CEUR Workshop Proceedings, vol. 1479, pp. 54–59. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1479/paper6.pdf
  124. 124.
    Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Expressive querying over fuzzy DL-Lite ontologies. In: Twentieth International Workshop on Description Logics (2007). http://www.image.ece.ntua.gr/publications.php
  125. 125.
    Stoilos, G., Stamou, G., Pan, J., Tzouvaras, V., Horrocks, I.: The fuzzy description logic f-SHIN. In: International Workshop on Uncertainty Reasoning for the Semantic Web (2005). http://www.image.ece.ntua.gr/publications.php
  126. 126.
    Stoilos, G., Stamou, G.B., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. J. Artif. Intell. Res. 30, 273–320 (2007)MathSciNetMATHGoogle Scholar
  127. 127.
    Stoilos, G., Straccia, U., Stamou, G., Pan, J.Z.: General concept inclusions in fuzzy description logics. In: Proceedings of the 17th Eureopean Conference on Artificial Intelligence (ECAI 2006), pp. 457–461. IOS Press (2006)Google Scholar
  128. 128.
    Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–399. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30227-8_33 CrossRefGoogle Scholar
  129. 129.
    Straccia, U.: Towards Top-k query answering in description logics: the case of DL-lite. In: Fisher, M., Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 439–451. Springer, Heidelberg (2006). doi:10.1007/11853886_36 CrossRefGoogle Scholar
  130. 130.
    Straccia, U.: Reasoning in l-\(\cal{SHIF}\): an expressive fuzzy description logic under lukasiewicz semantics. Technical report TR-2007-10-18, Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy (2007)Google Scholar
  131. 131.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. In: Proceedings of the 5th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2007), vol. 2, pp. 213–220. University of Ostrava, Ostrava (2007)Google Scholar
  132. 132.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathware Soft Comput. 14(3), 247–259 (2007)MathSciNetMATHGoogle Scholar
  133. 133.
    Li, Y., Xu, B., Lu, J., Kang, D.: Discrete tableau algorithms for \(\cal{FSHI}\). In: Proceeedings of the International Workshop on Description Logics (DL 2006). CEUR (2006). http://ceur-ws.org/Vol-189/submission_14.pdf
  134. 134.
    Zhou, Z., Qi, G., Liu, C., Hitzler, P., Mutharaju, R.: Reasoning with fuzzy-\(\cal{EL}^{+}\) ontologies using map reduce. In: 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 933–934. IOS Press (2012)Google Scholar
  135. 135.
    Andreasen, T., Bulskov, H.: Conceptual querying through ontologies. Fuzzy Sets Syst. 160(15), 2159–2172 (2009). ISSN 0165-0114. doi:10.1016/j.fss.2009.02.019
  136. 136.
    Calegari, S., Sanchez, E.: Object-fuzzy concept network: an enrichment of ontologies in semantic information retrieval. J. Am. Soc. Inf. Sci. Technol. 59(13), 2171–2185 (2008). ISSN 1532-2882. doi:10.1002/asi.v59:13
  137. 137.
    Liu, C., Liu, D., Wang, S.: Fuzzy geospatial information modeling in geospatial semantic retrieval. Adv. Math. Comput. Methods 2(4), 47–53 (2012)Google Scholar
  138. 138.
    Straccia, U., Visco, G.: DL-Media: an ontology mediated multimedia information retrieval system. In: Proceedings of the International Workshop on Description Logics (DL 2007), vol. 250. CEUR, Insbruck (2007). http://ceur-ws.org
  139. 139.
    Straccia, U., Visco, G.: DLMedia: an ontology mediated multimedia information retrieval system. In: Proceedings of the Fourth International Workshop on Uncertainty Reasoning for the Semantic Web, Karlsruhe, Germany, 26 October (URSW 2008). CEUR Workshop Proceedings, vol. 423. CEUR-WS.org (2008). http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-423/paper4.pdf
  140. 140.
    Wallace, M.: Ontologies and soft computing in flexible querying. Control Cybern. 38(2), 481–507 (2009)MathSciNetMATHGoogle Scholar
  141. 141.
    Zhang, L., Yu, Y., Zhou, J., Lin, C., Yang, Y.: An enhanced model for searching in semantic portals. In: WWW 2005: Proceedings of the 14th International Conference on World Wide Web, pp. 453–462. ACM Press, New York (2005). ISBN 1-59593-046-9. http://doi.acm.org/10.1145/1060745.1060812
  142. 142.
    Carlsson, C., Brunelli, M., Mezei, J.: Decision making with a fuzzy ontology. Soft Comput. 16(7), 1143–1152 (2012). ISSN 1432-7643. doi:10.1007/s00500-011-0789-x
  143. 143.
    Lee, C.-S., Wang, M.H., Hagras, H.: A type-2 fuzzy ontology and its application to personal diabetic-diet recommendation. IEEE Trans. Fuzzy Syst. 18(2), 374–395 (2010)Google Scholar
  144. 144.
    Pérez, I.J., Wikström, R., Mezei, J., Carlsson, C., Herrera-Viedma, E.: A new consensus model for group decision making using fuzzy ontology. Soft Comput. 17(9), 1617–1627 (2013)CrossRefGoogle Scholar
  145. 145.
    Yaguinuma, C.A., Santos, M.T.P., Camargo, H.A., Reformat, M.: A FML-based hybrid reasoner combining fuzzy ontology and mamdani inference. In: Proceedings of the 22nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2013) (2013)Google Scholar
  146. 146.
    Dasiopoulou, S., Kompatsiaris, I.: Trends and issues in description logics frameworks for image interpretation. In: Konstantopoulos, S., Perantonis, S., Karkaletsis, V., Spyropoulos, C.D., Vouros, G. (eds.) SETN 2010. LNCS (LNAI), vol. 6040, pp. 61–70. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12842-4_10 CrossRefGoogle Scholar
  147. 147.
    Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G.: Applying fuzzy DLS in the extraction of image semantics. J. Data Semant. 14, 105–132 (2009)CrossRefGoogle Scholar
  148. 148.
    Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G.: Investigating fuzzy DLS-based reasoning in semantic image analysis. Multimedia Tools Appl. 49(1), 167–194 (2010). ISSN 1380-7501. doi:10.1007/s11042-009-0393-6
  149. 149.
    Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J. ACM 48(5), 909–970 (2001)MathSciNetMATHCrossRefGoogle Scholar
  150. 150.
    Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrock, I.: A fuzzy description logic for multimedia knowledge representation. In: Proceedings of the International Workshop on Multimedia and the Semantic Web (2005)Google Scholar
  151. 151.
    Straccia, U.: Foundations of a logic based approach to multimedia document retrieval. Ph.D. thesis, Department of Computer Science, University of Dortmund, Dortmund, Germany, June 1999Google Scholar
  152. 152.
    Straccia, U.: A framework for the retrieval of multimedia objects based on four-valued fuzzy description logics. In: Crestani, F., Pasi, G. (eds.) Soft Computing in Information Retrieval: Techniques and Applications. SFSC, vol. 50, pp. 332–357. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  153. 153.
    Costa, P.C.G., Laskey, K.B., Lukasiewicz, T.: Uncertainty representation and reasoning in the semantic web. In: Semantic Web Engineering in the Knowledge Society, pp. 315–340. IGI Global (2008)Google Scholar
  154. 154.
    Quan, T.T., Hui, S.C., Fong, A.C.M., Cao, T.H.: Automatic fuzzy ontology generation for semantic web. IEEE Trans. Knowl. Data Eng. 18(6), 842–856 (2006)CrossRefGoogle Scholar
  155. 155.
    Sanchez, E. (ed.): Fuzzy Logic and the Semantic Web. Capturing Intelligence, vol. 1. Elsevier Science, Amsterdam (2006)MATHGoogle Scholar
  156. 156.
    Díaz-Rodríguez, N., León-Cadahía, O., Pegalajar-Cuéllar, M., Lilius, J., Delgado, M.: Handling real-world context-awareness, uncertainty and vagueness in real-time human activity tracking and recognition with a fuzzy ontology-based hybrid method. Sensors 14(10), 18131–18171 (2014)CrossRefGoogle Scholar
  157. 157.
    Díaz-Rodríguez, N., Pegalajar-Cuéllar, M., Lilius, J., Delgado, M.: A fuzzy ontology for semantic modelling and recognition of human behaviour. Knowl.-Based Syst. 66, 46–60 (2014)CrossRefGoogle Scholar
  158. 158.
    Liu, C., Liu, D., Wang, S.: Situation modeling and identifying under uncertainty. In: Proceedings of the 2nd Pacific-Asia Conference on Circuits, Communications and System (PACCS 2010), pp. 296–299 (2010)Google Scholar
  159. 159.
    Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surveys 46(4), 43:1–43:33 (2014). ISSN 0360-0300. doi:10.1145/2523819
  160. 160.
    Chen, R.-C., Bau, C.T., Yeh, C.-J.: Merging domain ontologies based on the WordNet system and fuzzy formal concept analysis techniques. Appl. Soft Comput. 11(2), 1908–1923 (2011)CrossRefGoogle Scholar
  161. 161.
    Todorov, K., Hudelot, C., Popescu, A., Geibel, P.: Fuzzy ontology alignment using background knowledge. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 22(1), 75–112 (2014)MathSciNetMATHCrossRefGoogle Scholar
  162. 162.
    Agarwal, S., Lamparter, S.: SMART: a semantic matchmaking portal for electronic markets. In: CEC 2005: Proceedings of the Seventh IEEE International Conference on E-Commerce Technology (CEC 2005), pp. 405–408. IEEE Computer Society, Washington, DC (2005). ISBN 0-7695-2277-7. http://dx.doi.org/10.1109/ICECT.2005.84
  163. 163.
    Colucci, S., Noia, T.D., Ragone, A., Ruta, M., Straccia, U., Tinelli, E.: Informative top-k retrieval for advanced skill management. In: de Virgilio, R., Giunchiglia, F., Tanca, L. (eds.) Semantic Web Information Management, pp. 449–476. Springer, Heidelberg (2010). doi:10.1007/978-3-642-04329-1_19. Chap. 19CrossRefGoogle Scholar
  164. 164.
    Ragone, A., Straccia, U., Bobillo, F., Noia, T., Sciascio, E.: Fuzzy bilateral matchmaking in e-marketplaces. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008. LNCS (LNAI), vol. 5179, pp. 293–301. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85567-5_37 CrossRefGoogle Scholar
  165. 165.
    Ragone, A., Straccia, U., Noia, T.D., Sciascio, E.D., Donini, F.M.: Extending datalog for matchmaking in P2P E-marketplaces. In: Ceci, M., Malerba, D., Tanca, L. (eds.) 15th Italian Symposium on Advanced Database Systems (SEBD 2007), pp. 463–470 (2007). ISBN 978-88-902981-0-3Google Scholar
  166. 166.
    Ragone, A., Straccia, U., Noia, T., Sciascio, E., Donini, F.M.: Vague knowledge bases for matchmaking in P2P E-marketplaces. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 414–428. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72667-8_30 CrossRefGoogle Scholar
  167. 167.
    Ragone, A., Straccia, U., Noia, T., Sciascio, E., Donini, F.M.: Towards a fuzzy logic for automated multi-issue negotiation. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 381–396. Springer, Heidelberg (2008). doi:10.1007/978-3-540-77684-0_25 CrossRefGoogle Scholar
  168. 168.
    Straccia, U., Tinelli, E., Colucci, S., Noia, T., Sciascio, E.: Semantic-based top-k retrieval for competence management. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 473–482. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04125-9_50 CrossRefGoogle Scholar
  169. 169.
    Straccia, U., Tinelli, E., Noia, T.D., Sciascio, E.D., Colucci, S.: Top-k retrieval for automated human resource management. In: Proceedings of the 17th Italian Symposium on Advanced Database Systems (SEBD 2009), pp. 161–168 (2009)Google Scholar
  170. 170.
    Straccia, U.: Multi criteria decision making in fuzzy description logics: a first step. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009. LNCS (LNAI), vol. 5711, pp. 78–86. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04595-0_10 CrossRefGoogle Scholar
  171. 171.
    Lee, C.-S., Jian, Z.-W., Huang, L.-K.: A fuzzy ontology and its application to news summarization. IEEE Trans. Syst. Man Cybern. Part B 35(5), 859–880 (2005)CrossRefGoogle Scholar
  172. 172.
    Eich, M., Hartanto, R., Kasperski, S., Natarajan, S., Wollenberg, J.: Towards coordinated multirobot missions for lunar sample collection in an unknown environment. J. Field Robot. 31(1), 35–74 (2014)CrossRefGoogle Scholar
  173. 173.
    Eich, T.: An application of fuzzy DL-based semantic perception to soil container classification. In: IEEE International Conference on Technologies for Practical Robot Applications (TePRA 2013), pp. 1–6. IEEE Press (2013)Google Scholar
  174. 174.
    Lisi, F.A., Straccia, U.: A logic-based computational method for the automated induction of fuzzy ontology axioms. Fundamenta Informaticae 124(4), 503–519 (2013)MathSciNetMATHGoogle Scholar
  175. 175.
    Lisi, F.A., Straccia, U.: A system for learning GCI axioms in fuzzy description logics. In: Proceedings of the 26th International Workshop on Description Logics (DL 2013). CEUR Workshop Proceedings, vol. 1014, pp. 760–778. CEUR-WS.org (2013). http://ceur-ws.org/Vol-1014/paper_42.pdf
  176. 176.
    Lisi, F.A., Straccia, U.: Can ILP deal with incomplete and vague structured knowledge? In: Muggleton, S.H., Watanabe, H. (eds.) Latest Advances in Inductive Logic Programming, chapter 21, pp. 199–206. World Scientific (2014). doi:10.1142/9781783265091_0021
  177. 177.
    Lisi, F.A., Straccia, U.: Learning in description logics with fuzzy concrete domains. Fundamenta Informaticae 140(3–4), 373–391 (2015). ISSN 1875-8681. doi:10.3233/FI-2015-1259
  178. 178.
    Lisi, F.A., Straccia, U.: An inductive logic programming approach to learning inclusion axiomsin fuzzy description logics. In: 26th Italian Conference on Computational Logic (CILC 2011). CEUR Electronic Workshop Proceedings, vol. 810, pp. 57–71 (2011). http://ceur-ws.org/Vol-810/paper-l04.pdf
  179. 179.
    Lisi, F.A., Straccia, U.: Towards learning fuzzy DL inclusion axioms. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds.) WILF 2011. LNCS (LNAI), vol. 6857, pp. 58–66. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23713-3_8 CrossRefGoogle Scholar
  180. 180.
    Lisi, F.A., Straccia, U.: Dealing with incompleteness and vagueness in inductive logic programming. In: 28th Italian Conference on Computational Logic (CILC 2013). CEUR Electronic Workshop Proceedings, vol. 1068, pp. 179–193 (2013). ISSN 1613-0073. http://ceur-ws.org/Vol-1068/paper-l12.pdf
  181. 181.
    Lisi, F.A., Straccia, U.: A FOIL-like method for learning under incompleteness and vagueness. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS (LNAI), vol. 8812, pp. 123–139. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44923-3_9 Google Scholar
  182. 182.
    Straccia, U., Mucci, M.: pFOIL-DL: learning (fuzzy) \(\cal{EL}\) concept descriptions from crisp owl data using a probabilistic ensemble estimation. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC 2015), pp. 345–352. ACM, Salamanca (2015)Google Scholar
  183. 183.
    Balaj, R., Groza, A.: Detecting influenza epidemics based on real-time semantic analysis of Twitter streams. In: Proceedings of the 3rd International Conference on Modelling and Development of Intelligent Systems (MDIS 2013), pp. 30–39 (2013)Google Scholar
  184. 184.
    d’Aquin, M., Lieber, J., Napoli, A.: Towards a semantic portal for oncology using a description logic with fuzzy concrete domains. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, pp. 379–393. Elsevier (2006)Google Scholar
  185. 185.
    Fernández, C.: Understanding image sequences: the role of ontologies in cognitive vision systems. Ph.D. thesis, Universitat Autònoma de Barcelona, Spain (2010)Google Scholar
  186. 186.
    Iglesias, J., Lehmann, J.: Towards integrating fuzzy logic capabilities into an ontology-based inductive logic programming framework. In: Proceedings of the 11th International Conference on Intelligent Systems Design and Applications (ISDA 2011), pp. 1323–1328 (2011)Google Scholar
  187. 187.
    Konstantopoulos, S., Karkaletsis, V., Bilidas, D.: An intelligent authoring environment for abstract semantic representations of cultural object descriptions. In: Proceedings of the EACL 2009 Workshop on Language Technology and Resources for Cultural Heritage, Social Sciences, Humanities, and Education (LaTeCH SHELT&R 2009), pp. 10–17 (2009)Google Scholar
  188. 188.
    Letia, I.A., Groza, A.: Modelling imprecise arguments in description logic. Adv. Electr. Comput. Eng. 9(3), 94–99 (2009)CrossRefGoogle Scholar
  189. 189.
    Liu, O., Tian, Q., Ma, J.: A fuzzy description logic approach to model management in R&D project selection. In: Proceedings of the 8th Pacific Asia Conference on Information Systems (PACIS 2004) (2004)Google Scholar
  190. 190.
    Martínez-Cruz, C., van der Heide, A., Sánchez, D., Triviño, G.: An approximation to the computational theory of perceptions using ontologies. Expert Syst. Appl. 39(10), 9494–9503 (2012). doi:10.1016/j.eswa.2012.02.107 CrossRefGoogle Scholar
  191. 191.
    Quan, T.T., Hui, S.C., Fong, A.C.M.: Automatic fuzzy ontology generation for semantic help-desk support. IEEE Trans. Ind. Inf. 2(3), 155–164 (2006)CrossRefGoogle Scholar
  192. 192.
    Rodger, J.A.: A fuzzy linguistic ontology payoff method for aerospace real optionsvaluation. Expert Syst. Appl. 40(8) (2013)Google Scholar
  193. 193.
    Slavíček, V.: An ontology-driven fuzzy workflow system. In: Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 515–527. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35843-2_44 CrossRefGoogle Scholar
  194. 194.
    OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/. W3C (2004)
  195. 195.
    Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)CrossRefGoogle Scholar
  196. 196.
    Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzy DL. Knowl.-Based Syst. 95, 12–34 (2016). doi:10.1016/j.knosys.2015.11.017. http://www.sciencedirect.com/science/article/pii/S0950705115004621
  197. 197.
  198. 198.
    Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web. IEEE Intell. Syst. 21(5), 84–87 (2006)CrossRefGoogle Scholar
  199. 199.
    Straccia, U.: Softfacts: a top-k retrieval engine for ontology mediated access to relational databases. In: Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics (SMC 2010), pp. 4115–4122. IEEE Press (2010)Google Scholar
  200. 200.
    Haarslev, V., Pai, H.-I., Shiri, N.: Optimizing tableau reasoning in ALC extended with uncertainty. In: Proceedings of the 2007 International Workshop on Description Logics (DL 2007) (2007)Google Scholar
  201. 201.
    Habiballa, H.: Resolution strategies for fuzzy description logic. In: Proceedings of the 5th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2007), vol. 2, pp. 27–36 (2007)Google Scholar
  202. 202.
    Konstantopoulos, S., Apostolikas, G.: Fuzzy-DL reasoning over unknown fuzzy degrees. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol. 4806, pp. 1312–1318. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76890-6_59. ISBN 3-540-76889-0, 978-3-540-76889-0CrossRefGoogle Scholar
  203. 203.
    Wang, H., Ma, Z.M., Yin, J.: FRESG: a kind of fuzzy description logic reasoner. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 443–450. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03573-9_38 CrossRefGoogle Scholar
  204. 204.
    Straccia, U.: An ontology mediated multimedia information retrieval system. In: Proceedings of the the 40th International Symposium on Multiple-Valued Logic (ISMVL 2010), pp. 319–324. IEEE Computer Society (2010)Google Scholar
  205. 205.
    Gao, M., Liu, C.: Extending OWL by fuzzy description logic. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2005), pp. 562–567. IEEE Computer Society, Washington, DC (2005). ISBN 0-7695-2488-5. http://dl.acm.org/citation.cfm?id=1105924.1106115
  206. 206.
    Stoilos, G., Stamou, G., Pan, J.Z.: Fuzzy extensions of OWL: logical properties and reduction to fuzzy description logics. Int. J. Approx. Reason. 51(6), 656–679 (2010). ISSN 0888-613X. doi:10.1016/j.ijar.2010.01.005
  207. 207.
    Bobillo, F., Straccia, U.: An OWL ontology for fuzzy OWL 2. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 151–160. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04125-9_18 CrossRefGoogle Scholar
  208. 208.
    Bobillo, F., Straccia, U.: Representing fuzzy ontologies in OWL 2. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), pp. 2695–2700. IEEE Press, July 2010Google Scholar
  209. 209.
    Fuzzy OWL 2 Web Ontology Language. http://www.straccia.info/software/FuzzyOWL/. ISTI - CNR (2011)
  210. 210.
    Ullman, J.D.: Principles of Database and Knowledge Base Systems, vol. 1, 2. Computer Science Press, Potomac (1989)Google Scholar
  211. 211.
    Shapiro, E.Y.: Logic programs with uncertainties: a tool for implementing rule-based systems. In: Proceedings of the 8th International Joint Conference on Artificial Intelligence (IJCAI 1983), pp. 529–532 (1983)Google Scholar
  212. 212.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril - Fuzzy and Evidential Reasoning in Artificial Intelligence. Research Studies Press Ltd., Baldock (1995)Google Scholar
  213. 213.
    Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Applications of fuzzy computation: knowledge based systems: knowledge representation. In: Ruspini, E.H., Bonnissone, P., Pedrycz, W. (eds.) Handbook of Fuzzy Computing. IOP Publishing, Bristol (1998)Google Scholar
  214. 214.
    Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-García, P., Puebla, G.: The Ciao prolog system. Reference manual. Technical report CLIPS3/97.1. School of Computer Science, Technical University of Madrid (UPM) (1997). http://www.cliplab.org/Software/Ciao/
  215. 215.
    Cao, T.H.: Annotated fuzzy logic programs. Fuzzy Sets Syst. 113(2), 277–298 (2000)MathSciNetMATHCrossRefGoogle Scholar
  216. 216.
    Chortaras, A., Stamou, G.B., Stafylopatis, A.: Adaptation of weighted fuzzy programs. In: 16th International Conference on Artificial Neural Networks - ICANN 2006, Part II, pp. 45–54 (2006)Google Scholar
  217. 217.
    Chortaras, A., Stamou, G., Stafylopatis, A.: Integrated query answering with weighted fuzzy rules. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 767–778. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1_67 CrossRefGoogle Scholar
  218. 218.
    Chortaras, A., Stamou, G.B., Stafylopatis, A.: Top-down computation of the semantics of weighted fuzzy logic programs. In: First International Conference on Web Reasoning and Rule Systems (RR 2007), pp. 364–366 (2007)Google Scholar
  219. 219.
    Ebrahim, R.: Fuzzy logic programming. Fuzzy Sets Syst. 117(2), 215–230 (2001)MathSciNetMATHCrossRefGoogle Scholar
  220. 220.
    Guller, D.: Procedural semantics for fuzzy disjunctive programs. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 247–261. Springer, Heidelberg (2002). doi:10.1007/3-540-36078-6_17. ISBN 3-540-00010-0CrossRefGoogle Scholar
  221. 221.
    Guller, D.: Semantics for fuzzy disjunctive programs with weak similarity. In: Abraham, A., Köppen, M. (eds.) Hybrid Information Systems. AINSC, vol. 14, pp. 285–299. Physica-Verlag, Heidelberg (2002). doi:10.1007/978-3-7908-1782-9_21. ISBN 3-7908-1480-6CrossRefGoogle Scholar
  222. 222.
    Hinde, C.: Fuzzy prolog. Int. J. Man-Mach. Stud. 24, 569–595 (1986)CrossRefGoogle Scholar
  223. 223.
    Ishizuka, M., Kanai, N.: Prolog-ELF: incorporating fuzzy logic. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence (IJCAI 1985), Los Angeles, CA, pp. 701–703 (1985)Google Scholar
  224. 224.
    Klawonn, F., Kruse, R.: A Lukasiewicz logic based Prolog. Mathware Soft Comput. 1(1), 5–29 (1994). https://citeseer.ist.psu.edu/klawonn94lukasiewicz.html MathSciNetGoogle Scholar
  225. 225.
    Magrez, P., Smets, P.: Fuzzy modus ponens: a new model suitable for applications inknowledge-based systems. Int. J. Intell. Syst. 4, 181–200 (1989)MATHCrossRefGoogle Scholar
  226. 226.
    Martin, T.P., Baldwin, J.F., Pilsworth, B.W.: The implementation of FProlog -a fuzzy prolog interpreter. Fuzzy Sets Syst. 23(1), 119–129 (1987). ISSN 0165-0114. http://dx.doi.org/10.1016/0165-0114(87)90104-7
  227. 227.
    Mukaidono, M.: Foundations of fuzzy logic programming. In: Advances in Fuzzy Systems - Application and Theory, vol. 1. World Scientific, Singapore (1996)Google Scholar
  228. 228.
    Mukaidono, M., Shen, Z., Ding, L.: Fundamentals of fuzzy prolog. Int. J. Approx. Reason. 3(2), 179–193 (1989). ISSN 0888-613X. http://dx.doi.org/10.1016/0888-613X(89)90005-4
  229. 229.
    Paulik, L.: Best possible answer is computable for fuzzy SLD-resolution. In: Hajék, P. (ed.) Gödel 1996: Logical Foundations of Mathematics, Computer Science, and Physics. LNL, vol. 6, pp. 257–266. Springer, Heidelberg (1996)Google Scholar
  230. 230.
    Rhodes, P.C., Menani, S.M.: Towards a fuzzy logic programming system: a clausal form fuzzy logic. Knowl.-Based Syst. 8(4), 174–182 (1995)CrossRefGoogle Scholar
  231. 231.
    Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoret. Comput. Sci. 275, 389–426 (2002)MathSciNetMATHCrossRefGoogle Scholar
  232. 232.
    Shen, Z., Ding, L., Mukaidono, M.: Fuzzy Computing. In: Theoretical Framework of Fuzzy Prolog Machine, pp. 89–100. Elsevier Science Publishers B.V. (1988). Chap. AGoogle Scholar
  233. 233.
    Subramanian, V.: On the semantics of quantitative logic programs. In: Proceedings of the 4th IEEE Symposium on Logic Programming, pp. 173–182. Computer Society Press (1987)Google Scholar
  234. 234.
    van Emden, M.: Quantitative deduction and its fixpoint theory. J. Log. Program. 4(1), 37–53 (1986)MathSciNetMATHCrossRefGoogle Scholar
  235. 235.
    Vojtás, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124, 361–370 (2001)MathSciNetMATHCrossRefGoogle Scholar
  236. 236.
    Vojtás, P., Paulík, L.: Soundness and completeness of non-classical extended SLD-resolution. In: Dyckhoff, R., Herre, H., Schroeder-Heister, P. (eds.) ELP 1996. LNCS, vol. 1050, pp. 289–301. Springer, Heidelberg (1996). doi:10.1007/3-540-60983-0_20 CrossRefGoogle Scholar
  237. 237.
    Vojtás, P., Vomlelová, M.: Transformation of deductive and inductive tasks between models of logic programming with imperfect information. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 839–846 (2004)Google Scholar
  238. 238.
    Wagner, G.: Negation in fuzzy and possibilistic logic programs. In: Martin, T., Arcelli, F. (eds.) Logic Programming and Soft Computing. Research Studies Press (1998)Google Scholar
  239. 239.
    Yasui, H., Hamada, Y., Mukaidono, M.: Fuzzy prolog based on Lukasiewicz implication and bounded product. IEEE Trans. Fuzzy Syst. 2, 949–954 (1995)Google Scholar
  240. 240.
    Calmet, J., Lu, J.J., Rodriguez, M., Schü, J.: Signed formula logic programming: Operational semantics and applications (extended abstract). In: Raś, Z.W., Michalewicz, M. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 202–211. Springer, Heidelberg (1996). doi:10.1007/3-540-61286-6_145 CrossRefGoogle Scholar
  241. 241.
    Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termination results and applications. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 252–265. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30227-8_23 CrossRefGoogle Scholar
  242. 242.
    Damásio, C.V., Medina, J., Ojeda-Aciego, M.: A tabulation proof procedure for residuated logic programming. In: Proceedings of the 6th European Conference on Artificial Intelligence (ECAI 2004) (2004)Google Scholar
  243. 243.
    Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Termination results for sorted multi-adjoint logic programs. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 1879–1886 (2004)Google Scholar
  244. 244.
    Damásio, C.V., Pan, J.Z., Stoilos, G., Straccia, U.: An approach to representing uncertainty rules in RuleML. In: Second International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML 2006), pp. 97–106. IEEE (2006)Google Scholar
  245. 245.
    Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In: Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 241–320. Kluwer, Alphen aan den Rijn (1998)Google Scholar
  246. 246.
    Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–393. Springer, Heidelberg (2001). doi:10.1007/3-540-45402-0_28 CrossRefGoogle Scholar
  247. 247.
    Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4_66. ISBN 3-540-42464-4CrossRefGoogle Scholar
  248. 248.
    Damásio, C.V., Pereira, L.M.: Sorted monotonic logic programs and their embeddings. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 807–814 (2004)Google Scholar
  249. 249.
    Damásio, C., Medina, J., Ojeda-Aciego, M.: A tabulation procedure for first-order residuated logic programs. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006) (2006)Google Scholar
  250. 250.
    Damásio, C., Medina, J., Ojeda-Aciego, M.: A tabulation procedure for first-order residuated logic programs. In: Proceedings of the IEEE World Congress on Computational Intelligence (section Fuzzy Systems) (WCCI 2006), pp. 9576–9583 (2006)Google Scholar
  251. 251.
    Damásio, C., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with imperfect information: applications and query procedure. J. Appl. Log. 7(5), 435–458 (2007)MathSciNetMATHCrossRefGoogle Scholar
  252. 252.
    Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artifical Intelligence, pp. 127–144. Kluwer Academic Publishers, Alphen aan den Rijn (2000)CrossRefGoogle Scholar
  253. 253.
    Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable semantics for logic programs with aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 212–226. Springer, Heidelberg (2001). doi:10.1007/3-540-45635-X_22. ISBN 3-540-42935-2CrossRefGoogle Scholar
  254. 254.
    Denecker, M., Marek, V.W., Truszczyński, M.: Uniform semantic treatment of default and autoepistemic logics. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning, pp. 74–84. Morgan Kaufman, Burlington (2000)Google Scholar
  255. 255.
    Denecker, M., Marek, V.W., Truszczyński, M.: Ultimate approximations. Technical report CW 320. Katholieke Iniversiteit Leuven, September 2001Google Scholar
  256. 256.
    Denecker, M., Marek, V.W., Truszczyński, M.: Ultimate approximations in nonmonotonic knowledge representation systems. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the 8th International Conference, pp. 177–188. Morgan Kaufmann, Burlington (2002)Google Scholar
  257. 257.
    Fitting, M.C.: The family of stable models. J. Log. Programm. 17, 197–225 (1993)MathSciNetMATHCrossRefGoogle Scholar
  258. 258.
    Fitting, M.C.: Fixpoint semantics for logic programming - a survey. Theoret. Comput. Sci. 21(3), 25–51 (2002)MathSciNetMATHCrossRefGoogle Scholar
  259. 259.
    Fitting, M.: A Kripke-Kleene-semantics for general logic programs. J. Log. Program. 2, 295–312 (1985)MATHCrossRefGoogle Scholar
  260. 260.
    Fitting, M.: Pseudo-Boolean valued Prolog. Stud. Logica XLVII(2), 85–91 (1987)MathSciNetMATHGoogle Scholar
  261. 261.
    Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Program. 11, 91–116 (1991)MathSciNetMATHCrossRefGoogle Scholar
  262. 262.
    Hähnle, R.: Uniform notation of tableaux rules for multiple-valued logics. In: Proceedings of the International Symposium on Multiple-Valued Logic, pp. 238–245. IEEE Press, Los Alamitos (1991)Google Scholar
  263. 263.
    Khamsi, M., Misane, D.: Disjunctive signed logic programs. Fundamenta Informaticae 32, 349–357 (1996)MathSciNetMATHGoogle Scholar
  264. 264.
    Khamsi, M., Misane, D.: Fixed point theorems in logic programming. Ann. Math. Artif. Intell. 21, 231–243 (1997)MathSciNetMATHCrossRefGoogle Scholar
  265. 265.
    Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty. In: Gyssens, M., Paredaens, J., Gucht, D. (eds.) ICDT 1988. LNCS, vol. 326, pp. 102–117. Springer, Heidelberg (1983). doi:10.1007/3-540-50171-1_6 CrossRefGoogle Scholar
  266. 266.
    Kulmann, P., Sandri, S.: An annotaded logic theorem prover for an extended possibilistic logic. Fuzzy Sets Syst. 144, 67–91 (2004)MATHCrossRefGoogle Scholar
  267. 267.
    Lakshmanan, L.V.S.: An epistemic foundation for logic programming with uncertainty. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 89–100. Springer, Heidelberg (1994). doi:10.1007/3-540-58715-2_116 CrossRefGoogle Scholar
  268. 268.
    Lakshmanan, L.V., Sadri, F.: Uncertain deductive databases: a hybrid approach. Inf. Syst. 22(8), 483–508 (1997)MATHCrossRefGoogle Scholar
  269. 269.
    Lakshmanan, L.V., Shiri, N.: A parametric approach to deductive databases with uncertainty. IEEE Trans. Knowl. Data Eng. 13(4), 554–570 (2001)CrossRefGoogle Scholar
  270. 270.
    Loyer, Y., Straccia, U.: Uncertainty and partial non-uniform assumptions in parametric deductive databases. In: Flesca, S., Greco, S., Ianni, G., Leone, N. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 271–282. Springer, Heidelberg (2002). doi:10.1007/3-540-45757-7_23 CrossRefGoogle Scholar
  271. 271.
    Loyer, Y., Straccia, U.: The well-founded semantics in normal logic programs with uncertainty. In: Hu, Z., Rodríguez-Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 152–166. Springer, Heidelberg (2002). doi:10.1007/3-540-45788-7_9 CrossRefGoogle Scholar
  272. 272.
    Loyer, Y., Straccia, U.: The approximate well-founded semantics for logic programs with uncertainty. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 541–550. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45138-9_48 CrossRefGoogle Scholar
  273. 273.
    Loyer, Y., Straccia, U.: Default knowledge in logic programs with uncertainty. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 466–480. Springer, Heidelberg (2003). doi:10.1007/978-3-540-24599-5_32 CrossRefGoogle Scholar
  274. 274.
    Loyer, Y., Straccia, U.: Epistemic foundation of the well-founded semantics over bilattices. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 513–524. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28629-5_39 CrossRefGoogle Scholar
  275. 275.
    Loyer, Y., Straccia, U.: Any-world assumptions in logic programming. Theoret. Comput. Sci. 342(2–3), 351–381 (2005)MathSciNetMATHCrossRefGoogle Scholar
  276. 276.
    Loyer, Y., Straccia, U.: Epistemic foundation of stable model semantics. J. Theory Pract. Log. Program. 6, 355–393 (2006)MathSciNetMATHCrossRefGoogle Scholar
  277. 277.
    Lu, J.J.: Logic programming with signs and annotations. J. Log. Comput. 6(6), 755–778 (1996)MathSciNetMATHCrossRefGoogle Scholar
  278. 278.
    Lu, J.J., Calmet, J., Schü, J.: Computing multiple-valued logic programs. Mathware Soft Comput. 2(4), 129–153 (1997)MathSciNetMATHGoogle Scholar
  279. 279.
    Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer semantics for the semantic web. Infsys Research report 1843-07-03. Institut FüR Informations Systeme Arbeitsbereich Wissensbasierte Systeme, Technische Universität Wien (2007)Google Scholar
  280. 280.
    Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer semantics for the semantic web. In: Sheth, M.L.A. (ed.) Progressive Concepts for Semantic Web Evolution: Applications and Developments, pp. 237–256. IGI Global (2010). Chap. 11Google Scholar
  281. 281.
    Madrid, N., Straccia, U.: On top-k retrieval for a family of non-monotonic ranking functions. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS (LNAI), vol. 8132, pp. 507–518. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40769-7_44 CrossRefGoogle Scholar
  282. 282.
    Majkic, Z.: Coalgebraic semantics for logic programs. In: 18th Workshop on (Constraint) Logic Programming (WCLP 2005), Ulm, Germany (2004)Google Scholar
  283. 283.
    Majkic, Z.: Many-valued intuitionistic implication and inference closure in abilattice-based logic. In: 35th International Symposium on Multiple-Valued Logic (ISMVL 2005), pp. 214–220 (2005)Google Scholar
  284. 284.
    Majkic, Z.: Truth and knowledge fixpoint semantics for many-valued logic programming. In: 19th Workshop on (Constraint) Logic Programming (WCLP 2005), pp. 76–87, Ulm, Germany (2005)Google Scholar
  285. 285.
    Marek, V.W., Truszczyński, M.: Logic programming with costs. Technical report, University of Kentucky (2000). ftp://al.cs.engr.uky.edu/cs/manuscripts/lp-costs.ps
  286. 286.
    Mateis, C.: Extending disjunctive logic programming by T-norms. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 290–304. Springer, Heidelberg (1999). doi:10.1007/3-540-46767-X_21 CrossRefGoogle Scholar
  287. 287.
    Mateis, C.: Quantitative disjunctive logic programming: semantics and computation. AI Commun. 13, 225–248 (2000)MathSciNetMATHGoogle Scholar
  288. 288.
    Medina, J., Ojeda-Aciego, M.: Multi-adjoint logic programming. In: Proceedings of the 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 823–830 (2004)Google Scholar
  289. 289.
    Medina, J., Ojeda-Aciego, M., Vojtaš, P.: Multi-adjoint logic programming with continous semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 351–364. Springer, Heidelberg (2001). doi:10.1007/3-540-45402-0_26 CrossRefGoogle Scholar
  290. 290.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic programming. In: Brazdil, P., Jorge, A. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 290–297. Springer, Heidelberg (2001). doi:10.1007/3-540-45329-6_29 CrossRefGoogle Scholar
  291. 291.
    Medina, J., Ojeda-Aciego, M., Vojtás, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 1(146), 43–62 (2004)MathSciNetMATHCrossRefGoogle Scholar
  292. 292.
    Rounds, W.C., Zhang, G.-Q.: Clausal logic and logic programming in algebraic domains. Inf. Comput. 171, 183–200 (2001). https://citeseer.ist.psu.edu/276602.html MathSciNetMATHCrossRefGoogle Scholar
  293. 293.
    Schroeder, M., Schweimeier, R.: Fuzzy argumentation and extended logic programming. In: Proceedings of ECSQARU Workshop Adventures in Argumentation (2001)Google Scholar
  294. 294.
    Schroeder, M., Schweimeier, R.: Arguments and misunderstandings: fuzzy unification for negotiating agents. In: Proceedings of the ICLP Workshop CLIMA 2002. Elsevier (2002)Google Scholar
  295. 295.
    Schweimeier, R., Schroeder, M.: Fuzzy unification and argumentation for well-founded semantics. In: Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 102–121. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24618-3_9 CrossRefGoogle Scholar
  296. 296.
    Straccia, U.: Annotated answer set programming. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), pp. 1212–1219. E.D.K., Paris (2006). ISBN 2-84254-112-XGoogle Scholar
  297. 297.
    Straccia, U.: Query answering under the any-world assumption for normal logic programs. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation (KR 2006), pp. 329–339. AAAI Press (2006)Google Scholar
  298. 298.
    Straccia, U.: A top-down query answering procedure for normal logic programs under the any-world assumption. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 115–127. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1_13 CrossRefGoogle Scholar
  299. 299.
    Straccia, U.: Towards vague query answering in logic programming for logic-based information retrieval. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 125–134. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72950-1_13 CrossRefGoogle Scholar
  300. 300.
    Straccia, U.: On the top-k retrieval problem for ontology-based access to databases. In: Pivert, O., Zadrożny, S. (eds.) Flexible Approaches in Data, Information and Knowledge Management. SCI, vol. 497, pp. 95–114. Springer, Heidelberg (2014). doi:10.1007/978-3-319-00954-4_5. ISBN 978-3-319-00953-7CrossRefGoogle Scholar
  301. 301.
    Straccia, U., Madrid, N.: A top-k query answering procedure for fuzzy logic programming. Fuzzy Sets Syst. 205, 1–29 (2012)MathSciNetMATHCrossRefGoogle Scholar
  302. 302.
    Straccia, U., Ojeda-Aciego, M., Damásio, C.V.: On fixed-points of multi-valued functions on complete lattices and their application to generalized logic programs. SIAM J. Comput. 8(5), 1881–1911 (2009)MATHCrossRefGoogle Scholar
  303. 303.
    Turner, H.: Signed logic programs. In: Bruynooghe, M. (ed.) Proceedings of the 1994 International Symposium on Logic Programming, pp. 61–75. The MIT Press (1994). https://citeseer.ist.psu.edu/turner94signed.html

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ISTI - CNR, Area Della Ricerca di PisaPisaItaly
  2. 2.Department of Computer Science and Systems EngineeringUniversidad de ZaragozaZaragozaSpain

Personalised recommendations