Algorithm Engineering Aspects of Real-Time Rendering Algorithms

  • Matthias FischerEmail author
  • Claudius Jähn
  • Friedhelm Meyer auf der Heide
  • Ralf Petring
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9220)


Defining, measuring, and comparing the quality and efficiency of rendering algorithms in computer graphics is a demanding challenge: quality measures are often application specific and efficiency is strongly influenced by properties of the rendered scene and the used hardware. We survey the currently employed evaluation methods for the development process of rendering algorithms. Then, we present our PADrend framework, which supports systematic and flexible development, evaluation, adaptation, and comparison of rendering algorithms, and provides a comfortable and easy-to-use platform for developers of rendering algorithms. The system includes a new evaluation method to improve the objectivity of experimental evaluations of rendering algorithms.


Graphic Processing Unit Adaptive Sampling Graphic Hardware Scene Graph Virtual Scene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Akenine-Möller, T., Haines, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A K Peters Ltd., Wellesley (2008)CrossRefGoogle Scholar
  2. 2.
    Baxter III., W.V., Sud, A., Govindaraju, N.K., Manocha, D.: GigaWalk: interactive walkthrough of complex environments. In: Proceedings of the 13th Eurographics Workshop on Rendering (EGWR 2002), pp. 203–214 (2002)Google Scholar
  3. 3.
    Bittner, J., Wimmer, M., Piringer, H., Purgathofer, W.: Coherent hierarchical culling: hardware occlusion queries made useful. Comput. Graph. Forum Proc. of Eurographics 2004 23(3), 615–624 (2004)Google Scholar
  4. 4.
    Brüderlin, B., Heyer, M., Pfützner, S.: Interviews3D: a platform for interactive handling of massive data sets. IEEE Comput. Graph. Appl. 27(6), 48–59 (2007)CrossRefGoogle Scholar
  5. 5.
    Burt, P.J.: Fast filter transform for image processing. Comput. Graph. Image Process. 16(1), 20–51 (1981)CrossRefGoogle Scholar
  6. 6.
    Catmull, E.E.: A subdivision algorithm for computer display of curved surfaces. Ph.D. thesis, Department of Computer Science, University of Utah, Salt Lake City, UT, USA (1974)Google Scholar
  7. 7.
    Chamberlain, B., DeRose, T., Lischinski, D., Salesin, D., Snyder, J.: Fast rendering of complex environments using a spatial hierarchy. In: Proceedings of Graphics Interface (GI 1996), pp. 132–141. Canadian Information Processing Society (1996)Google Scholar
  8. 8.
    Cook, R.L.: Stochastic sampling in computer graphics. ACM Trans. Graph. (TOG) 5(1), 51–72 (1986)CrossRefGoogle Scholar
  9. 9.
    Eikel, B., Jähn, C., Fischer, M., auf der Heide, F.M.: Spherical visibility sampling. Comput. Graph. Forum Proc. of 24th Eurographics Symposium on Rendering 32(4), 49–58 (2013)CrossRefGoogle Scholar
  10. 10.
    Eikel, B., Jähn, C., Petring, R.: PADrend: platform for algorithm development and rendering. In: Augmented & Virtual Reality in der Produktentstehung. HNI-Verlagsschriftenreihe, vol. 295, pp. 159–170. University Paderborn, Heinz Nixdorf Institute (2011)Google Scholar
  11. 11.
    Funkhouser, T.A., Séquin, C.H.: Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments. In: Proceedings of the 20th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1993), pp. 247–254 (1993)Google Scholar
  12. 12.
    Funkhouser, T.A., Séquin, C.H., Teller, S.J.: Management of large amounts of data in interactive building walkthroughs. In: Proceedings of the 1992 Symposium on Interactive 3D Graphics (I3D 1992), pp. 11–20 (1992)Google Scholar
  13. 13.
    Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings of the Conference on Visualization (VIS 1998), pp. 263–269 (1998)Google Scholar
  14. 14.
    Guthe, M., Balázs, Á., Klein, R.: Near optimal hierarchical culling: performance driven use of hardware occlusion queries. In: Akenine-Möller, T., Heidrich, W. (eds.) Proceedings of the 17th Eurographics Symposium on Rendering (EGSR 2006), pp. 207–214 (2006)Google Scholar
  15. 15.
    Heckbert, P., Garland, M.: Multiresolution modeling for fast rendering. In: Proceedings of Graphics Interface (GI 1994), pp. 43–50 (1994)Google Scholar
  16. 16.
    Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism. Am. Stat. 52(2), 181–184 (1998)Google Scholar
  17. 17.
    Jähn, C.: Progressive blue surfels. Technical report, Heinz Nixdorf Institute, University of Paderborn (2013). CoRR.
  18. 18.
    Jähn, C., Eikel, B., Fischer, M., Petring, R., Meyer auf der Heide, F.: Evaluation of rendering algorithms using position-dependent scene properties. In: Bebis, G., et al. (eds.) ISVC 2013. LNCS, vol. 8033, pp. 108–118. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41914-0_12 CrossRefGoogle Scholar
  19. 19.
    Kovalčík, V., Sochor, J.: Occlusion culling with statistically optimized occlusion queries. In: The 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2005), pp. 109–112 (2005)Google Scholar
  20. 20.
    Li, L., Yang, X., Xiao, S.: Efficient visibility projection on spherical polar coordinates for shadow rendering using geometry shader. In: IEEE International Conference on Multimedia and Expo, pp. 1005–1008 (2008)Google Scholar
  21. 21.
    Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Computer Graphics and Geometric Modeling. Morgan Kaufman Publishers, Burlington (2003)Google Scholar
  22. 22.
    Mattausch, O., Bittner, J., Wimmer, M.: CHC++: coherent hierarchical culling revisited. Comput. Graph. Forum Proc. of Eurographics 2008 27(2), 221–230 (2008)Google Scholar
  23. 23.
    Meruvia-Pastor, O.E.: Visibility preprocessing using spherical sampling of polygonal patches. In: Short Presentations of Eurographics 2002 (2002)Google Scholar
  24. 24.
    Petring, R., Eikel, B., Jähn, C., Fischer, M., Meyer auf der Heide, F.: Real-time 3D rendering of heterogeneous scenes. In: Bebis, G., et al. (eds.) ISVC 2013. LNCS, vol. 8033, pp. 448–458. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41914-0_44 CrossRefGoogle Scholar
  25. 25.
    Sander, P.V., Nehab, D., Barczak, J.: Fast triangle reordering for vertex locality and reduced overdraw. ACM Trans. Graph. (TOG) ACM SIGGRAPH 2007 26(3), 89:1–89:9 (2007)Google Scholar
  26. 26.
    Staadt, O.G., Walker, J., Nuber, C., Hamann, B.: A survey and performance analysis of software platforms for interactive cluster-based multi-screen rendering. In: Proceedings of the Workshop on Virtual Environments (EGVE 2003), pp. 261–270 (2003)Google Scholar
  27. 27.
    Straßer, W.: Schnelle Kurven- und Flächendarstellung auf graphischen Sichtgeräten. Ph.D. thesis, Technische Universität Berlin, Berlin, Germany (1974)Google Scholar
  28. 28.
    Süß, T., Jähn, C., Fischer, M.: Asynchronous parallel reliefboard computation for scene object approximation. In: Proceedings of the 10th Eurographics Symposium on Parallel Graphics and Visualization (EGPGV 2010), pp. 43–51 (2010)Google Scholar
  29. 29.
    Teller, S.J., Séquin, C.H.: Visibility preprocessing for interactive walkthroughs. In: Proceedings of the 18th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1991), pp. 61–70 (1991)Google Scholar
  30. 30.
    Wand, M., Fischer, M., Peter, I., Meyer auf der Heide, F., Straßer, W.: The randomized z-buffer algorithm: interactive rendering of highly complex scenes. In: Proceedings of the 28th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 2001), pp. 361–370 (2001)Google Scholar
  31. 31.
    Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar
  32. 32.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  33. 33.
    Wimmer, M., Wonka, P.: Rendering time estimation for real-time rendering. In: Rendering Techniques 2003, Proceedings of the Eurographics Symposium on Rendering 2003, pp. 118–129 (2003)Google Scholar
  34. 34.
    Yuan, P., Green, M., Lau, R.W.H.: A framework for performance evaluation of real-time rendering algorithms in virtual reality. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST 1997), pp. 51–58 (1997)Google Scholar
  35. 35.
    Zhang, H., Manocha, D., Hudson, T., Hoff III., K.E.: Visibility culling using hierarchical occlusion maps. In: Proceedings of the 24th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 1997), pp. 77–88 (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matthias Fischer
    • 1
    Email author
  • Claudius Jähn
    • 1
  • Friedhelm Meyer auf der Heide
    • 1
  • Ralf Petring
    • 1
  1. 1.Heinz Nixdorf Institute, Department of Computer SciencePaderborn UniversityPaderbornGermany

Personalised recommendations