Engineering Art Galleries

  • Pedro J. de Rezende
  • Cid C. de Souza
  • Stephan Friedrichs
  • Michael Hemmer
  • Alexander Kröller
  • Davi C. Tozoni
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9220)

Abstract

The Art Gallery Problem (AGP) is one of the most well-known problems in Computational Geometry (CG), with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes.

Keywords

Art gallery problem Computational geometry Linear programming Experimental algorithmics 

References

  1. 1.
    Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 4th edn. Springer Publishing Company Incorporated, Heidelberg (2009)MATHGoogle Scholar
  2. 2.
    Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. In: ALENEX, pp. 120–134 (2007)Google Scholar
  3. 3.
    Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of polygons. Int. J. Comput. Geom. Appl. 20(5), 601–630 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Asano, T.: An efficient algorithm for finding the visibility polygon for a polygonal region with holes. IEICE Trans. 68(9), 557–559 (1985)Google Scholar
  5. 5.
    Austern, M.H.: Generic Programming and the STL. PUB-AW (1999)Google Scholar
  6. 6.
    Balas, E., Ng, S.M.: On the set covering polytope: II. lifting the facets with coefficients in \(\{0, 1, 2\}\). Math. Program. 45, 1–20 (1989). doi:10.1007/BF01589093. http://dx.doi.org/10.1007/BF01589093 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Baumgartner, T., Fekete, S.P., Kröller, A., Schmidt, C.: Exact solutions and bounds for general art gallery problems. In: Proceedings of the SIAM-ACM Workshop on Algorithm Engineering and Experiments, ALENEX 2010, pp. 11–22. SIAM (2010)Google Scholar
  8. 8.
    Beasley, J.E.: Lagrangian relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems, pp. 243–303. Wiley, New York (1993). http://dl.acm.org/citation.cfm?id=166648.166660 Google Scholar
  9. 9.
    Bottino, A., Laurentini, A.: A nearly optimal sensor placement algorithm for boundary coverage. Pattern Recogn. 41(11), 3343–3355 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Bottino, A., Laurentini, A.: A nearly optimal algorithm for covering the interior of an art gallery. Pattern Recogn. 44(5), 1048–1056 (2011). http://www.sciencedirect.com/science/article/pii/S0031320310005376 CrossRefMATHGoogle Scholar
  11. 11.
    Bungiu, F., Hemmer, M., Hershberger, J., Huang, K., Kröller, A.: Efficient computation of visibility polygons. CoRR abs/1403.3905 (2014). http://arxiv.org/abs/1403.3905
  12. 12.
    CGAL (Computational Geometry Algorithms Library). http://www.cgal.org/
  13. 13.
    Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18, 39–41 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chwa, K., Jo, B., Knauer, C., Moet, E., van Oostrum, R., Shin, C.: Guarding art galleries by guarding witnesses. Int. J. Comput. Geom. Appl. 16(2–3), 205–226 (2006). http://dx.doi.org/10.1142/S0218195906002002 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for an art gallery problem. Technical report IC-09-46, Institute of Computing, University of Campinas, November 2009Google Scholar
  16. 16.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: Instances for the art gallery problem (2009). http://www.ic.unicamp.br/~cid/Problem-instances/Art-Gallery
  17. 17.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: An IP solution to the art gallery problem. In: SoCG 2009: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 88–89. ACM, New York (2009)Google Scholar
  18. 18.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: Video: an IP solution to the art gallery problem. In: 18th Video Review of Computational Geometry at the 25th Annual Symposium on Computational Geometry, June 2009. www.computational-geometry.org/SoCG-videos/socg09video/video1-couto.mov
  19. 19.
    Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for minimizing vertex guards on art galleries. Int. Trans. Oper. Res. 18, 425–448 (2011)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Couto, M.C., de Souza, C.C., de Rezende, P.J.: An exact and efficient algorithm for the orthogonal art gallery problem. In: SIBGRAPI 2007: Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 87–94. IEEE Computer Society, Washington, DC (2007)Google Scholar
  21. 21.
    Couto, M.C., Souza, C.C., Rezende, P.J.: Experimental evaluation of an exact algorithm for the orthogonal art gallery problem. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68552-4_8 CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Deshpande, A., Kim, T., Demaine, E.D., Sarma, S.E.: A pseudopolynomial time O(logn)-approximation algorithm for art gallery problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73951-7_15 CrossRefGoogle Scholar
  24. 24.
    Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Inf. Process. Lett. 100(6), 238–245 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Eisenbrand, F., Funke, S., Karrenbauer, A., Matijevic, D.: Energy-aware stage illumination. In: Proceedings of the 21st ACM Symposium on Computational Geometry (SCG 2005), pp. 336–345 (2005). http://portal.acm.org/citation.cfm?doid=1064092.1064144
  27. 27.
    Erdem, U.M., Sclaroff, S.: Optimal placement of cameras in floorplans to satisfy task requirements and cost constraints. In: Proceedings of the Fifth International Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras, pp. 30–41 (2004)Google Scholar
  28. 28.
    Erdem, U.M., Sclaroff, S.: Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput. Vis. Image Underst. 103(3), 156–169 (2006)CrossRefGoogle Scholar
  29. 29.
    Ernestus, M., Friedrichs, S., Hemmer, M., Kokemüller, J., Kröller, A., Moeini, M., Schmidt, C.: Algorithms for art gallery illumination. arXiv e-prints, October 2014Google Scholar
  30. 30.
    Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C.: Facets for art gallery problems. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 208–220. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38768-5_20 CrossRefGoogle Scholar
  31. 31.
    Fekete, S.P., Friedrichs, S., Kröller, A., Schmidt, C.: Facets for art gallery problems. Algorithmica 73(2), 411–440 (2014)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Comb. Theory Ser. B 24(3), 374–375 (1978)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Friedrichs, S.: Integer solutions for the art gallery problem using linear programming. Master’s thesis, TU Braunschweig (2012)Google Scholar
  34. 34.
    Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons and terrains. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 21–34. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11440-3_3 CrossRefGoogle Scholar
  35. 35.
    GNU Multiple Precision Arithmetic Library (2013). http://gmplib.org
  36. 36.
    Hemmer, M., Huang, K., Bungiu, F.: 2D visibility. In: CGAL User and Reference Manual. CGAL Editorial Board (2014, to appear)Google Scholar
  37. 37.
    Honsberger, R.: Mathematical Gems II. Mathematical Association of America, Washington, DC (1976)MATHGoogle Scholar
  38. 38.
    Kahn, J., Klawe, M., Kleitman, D.: Traditional art galleries require fewer watchmen. SIAM J. Algebr. Discrete Methods 4(2), 194–206 (1983)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: Proceedings of the 15th Annual ACM Symposium of Computational Geometry (SCG), pp. 351–359 (1999)Google Scholar
  40. 40.
    Kokemüller, J.: Variants of the art gallery problem. Master’s thesis, TU Braunschweig (2014)Google Scholar
  41. 41.
    Kröller, A., Baumgartner, T., Fekete, S.P., Schmidt, C.: Exact solutions and bounds for general art gallery problems. ACM J. Exp. Algothmmics 17, Article ID 2.3 (2012)Google Scholar
  42. 42.
    Kröller, A., Moeini, M., Schmidt, C.: A novel efficient approach for solving the art gallery problem. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 5–16. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36065-7_3 CrossRefGoogle Scholar
  43. 43.
    Kröller, A., Schmidt, C.: Energy-aware art gallery illumination. In: Proceedings of the 28th European Workshop on Computational Geometry (EuroCG 2012), pp. 93–96 (2012)Google Scholar
  44. 44.
    Laurentini, A.: Guarding the walls of an art gallery. Vis. Comput. 15(6), 265–278 (1999)CrossRefGoogle Scholar
  45. 45.
    Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Mehlhorn, K., Näher, S.: Leda: A Platform for Combinatorial and Geometric Computing. PUB-CAMB, Cambridge (2000)MATHGoogle Scholar
  47. 47.
    Mitchell, J.S.B.: Approximating watchman routes. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, NewOrleans, Louisiana, USA, 6-8 January 2013, pp. 844–855 (2013)Google Scholar
  48. 48.
    Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1362–1373. Springer, Heidelberg (2005). doi:10.1007/11523468_110 CrossRefGoogle Scholar
  49. 49.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. International Series of Monographs on Computer Science. Oxford University Press, New York (1987)MATHGoogle Scholar
  50. 50.
    O’Rourke, J., Supowit, K.: Some NP-hard polygon decomposition problems. IEEE Trans. Inf. Theory 29(2), 181–190 (1983)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Packer, E.: Computing multiple watchman routes. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 114–128. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68552-4_9 CrossRefGoogle Scholar
  52. 52.
    Packer, E.: Robust geometric computing and optimal visibility coverage. Ph.D. thesis, SUNY Stony Brook (2008)Google Scholar
  53. 53.
    Tao, P.D., An, L.T.H.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)MathSciNetMATHGoogle Scholar
  54. 54.
    Pion, S., Fabri, A.: A generic lazy evaluation scheme for exact geometric computations. In: 2nd # WOR-LCSD (2006). http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0608063
  55. 55.
    Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-polygons. Math. Log. Q. 41, 261–267 (1995)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Shermer, T.C.: Recent results in art galleries (geometry). Proc. IEEE 80(9), 1384–1399 (1992)CrossRefGoogle Scholar
  57. 57.
    Tomás, A.P., Bajuelos, A.L., Marques, F.: Approximation algorithms to minimum vertex cover problems on polygons and terrains. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 869–878. Springer, Heidelberg (2003). doi:10.1007/3-540-44860-8_90 CrossRefGoogle Scholar
  58. 58.
    Tomás, A.P., Bajuelos, A.L., Marques, F.: On visibility problems in the plane - solving minimum vertex guard problems by successive approximations. In: Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics (AI & MATH 2006) (2006, to appear)Google Scholar
  59. 59.
    Tozoni, D.C., de Rezende, P.J., de Souza, C.C.: Algorithm 966: a practical iterative algorithm for the art gallery problem using integer linear programming. ACM Trans. Math. Softw. 43(2), 16:1–16:27 (2016). doi:10.1145/2890491. Article no. 16CrossRefGoogle Scholar
  60. 60.
    Tozoni, D.C., Rezende, P.J., Souza, C.C.: The quest for optimal solutions for the art gallery problem: a practical iterative algorithm. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 320–336. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38527-8_29 CrossRefGoogle Scholar
  61. 61.
    Urrutia, J.: Art gallery and illumination problems. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry, pp. 973–1026. Elsevier Science Publishers, Amsterdam (2000)CrossRefGoogle Scholar
  62. 62.
    Wein, R., Berberich, E., Fogel, E., Halperin, D., Hemmer, M., Salzman, O., Zukerman, B.: 2D arrangements. In: CGAL User and Reference Manual, 4.0 edn., CGAL Editorial Board (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Pedro J. de Rezende
    • 1
  • Cid C. de Souza
    • 1
  • Stephan Friedrichs
    • 2
  • Michael Hemmer
    • 3
  • Alexander Kröller
    • 3
  • Davi C. Tozoni
    • 1
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil
  2. 2.Max Planck Institute for InformaticsSaarbrückenGermany
  3. 3.TU Braunschweig, IBR, Algorithms GroupBraunschweigGermany

Personalised recommendations