Advertisement

Towards Simulation- and Mining-Based Translation of Process Models

  • Lars Ackermann
  • Stefan Schönig
  • Stefan Jablonski
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 272)

Abstract

Process modeling is usually done using imperative modeling languages like BPMN or EPCs. In order to cope with the complexity of human-centric and flexible business processes several declarative process modeling languages (DPMLs) have been developed during the last years. DPMLs allow for the specification of constraints that restrict execution flows. They differ widely in terms of their level of expressiveness and tool support. Furthermore, research has shown that the understandability of declarative process models is rather low. Since there are applications for both classes of process modeling languages, there arises a need for an automatic translation of process models from one language into another. Our approach is based upon well-established methodologies in process management for process model simulation and process mining without requiring the specification of model transformation rules. In this paper, we present the technique in principle and evaluate it by transforming process models between two exemplary process modeling languages.

Keywords

Process model translation Simulation Process mining 

References

  1. 1.
    Jablonski, S.: MOBILE: a modular workflow model and architecture. In: Working Conference on Dynamic Modelling and Information Systems (1994)Google Scholar
  2. 2.
    van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: balancing between flexibility and support. CSRD 23(2), 99–113 (2009)Google Scholar
  3. 3.
    Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imperative versus declarative process modeling languages: an empirical investigation. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28108-2_37 CrossRefGoogle Scholar
  4. 4.
    Vaculín, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative business artifact centric modeling of decision and knowledge intensive business processes. In: EDOC, pp. 151–160 (2011)Google Scholar
  5. 5.
    Pesic, M., Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNCS, vol. 256, pp. 169–180. Springer, Heidelberg (2006). doi: 10.1007/11837862_18 CrossRefGoogle Scholar
  6. 6.
    Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational workflows as timed dynamic condition response graphs. J. Logic Algebraic Program. 82(5), 164–185 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zeising, M., Schönig, S., Jablonski, S.: Towards a common platform for the support of routine and agile business processes. In: CollaborateCom (2014)Google Scholar
  8. 8.
    Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative models. In: SIMPDA, pp. 162–173 (2014)Google Scholar
  9. 9.
    Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation generation by-example. In: HICSS, pp. 285–294 (2007)Google Scholar
  10. 10.
    Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04425-0_58 CrossRefGoogle Scholar
  11. 11.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  12. 12.
    Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative process modeling in BPMN. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 84–100. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19069-3_6 CrossRefGoogle Scholar
  13. 13.
    Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal, S.: Declarative versus imperative process modeling languages: the issue of understandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01862-6_29 CrossRefGoogle Scholar
  14. 14.
    Aalst, W.M.P.: Business process simulation revisited. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP, vol. 231, pp. 1–14. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15723-3_1 CrossRefGoogle Scholar
  15. 15.
    Stewart, R.: Simulation: The Practice of Model Development and Use. Wiley, Hoboken (2004)Google Scholar
  16. 16.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, vol. 2. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317 (2011)Google Scholar
  18. 18.
    Maggi, F., Mooij, A., van der Aalst, W.: User-guided discovery of declarative process models. In: CIDM (2011)Google Scholar
  19. 19.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. TMIS 5(4), 24:1–24:37 (2015)CrossRefGoogle Scholar
  20. 20.
    Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Proceedings of the 27th International Conference on Advanced Information Systems Engineering, CAiSE 2015, Stockholm, Sweden, 8–12 June 2015 (2015, in press)Google Scholar
  21. 21.
    Schönig, S., Cabanillas, C., Jablonski, S., Mendling, J.: Mining the organisational perspective in agile business processes. In: Schmidt, R., Guédria, W., Bider, I., Guerreiro, S. (eds.) BPMDS/EMMSAD 2016. LNBIP, vol. 248, pp. 37–52. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-19237-6_3 CrossRefGoogle Scholar
  22. 22.
    Aalst, W.M.P.: Handbook on Business Process Management: Introduction, Methods, and Information Systems. Springer, Heidelberg (2015)Google Scholar
  23. 23.
    Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07734-5_6 Google Scholar
  24. 24.
    Nakatumba, J., Rozinat, A., Russell, N.: Business process simulation: how to get it right. In: International Handbook on BPM (2008)Google Scholar
  25. 25.
    Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP, vol. 231, pp. 20–36. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24626-0_2 CrossRefGoogle Scholar
  26. 26.
    Westergaard, M.: Better algorithms for analyzing and enacting declarative workflow languages using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23059-2_10 CrossRefGoogle Scholar
  27. 27.
    Maggi, F.M., Bose, R.P.J.C., Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31095-9_18 CrossRefGoogle Scholar
  28. 28.
    Maggi, F.M.: Declarative process mining with the declare component of ProM. In: BPM (Demos) (2013)Google Scholar
  29. 29.
    Westergaard, M., Stahl, C.: Leveraging super-scalarity and parallelism to provide fast declare mining without restrictions. Theor. Math. Phys. 181(2), 1418–1427 (2014)CrossRefGoogle Scholar
  30. 30.
    Uhlmann, E., Gabriel, C., Raue, N.: An automation approach based on workflows and software agents for industrial product-service systems. CIRP 30, 341–346 (2015)CrossRefGoogle Scholar
  31. 31.
    Dongen, B.F., Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). doi: 10.1007/11494744_25 CrossRefGoogle Scholar
  32. 32.
    Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: BPMN miner: automated discovery of BPMN process models with hierarchical structure. Inf. Syst. 56, 284–303 (2016)CrossRefGoogle Scholar
  33. 33.
    Van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisc. Rev. DM KD 2(2), 182–192 (2012)Google Scholar
  34. 34.
    Rodrigues, R., Azevedo, L.G., Revoredo, K., Barros, M.O., Leopold, H.: BPME: an experiment on process model understandability using textual work instructions and BPMN Models. In: SBES (2015)Google Scholar
  35. 35.
    Fahland, D.: Towards analyzing declarative workflows. In: Autonomous and Adaptive Web Services. Dagstuhl Seminar Proceed, vol. 07061. IBFI, Germany (2007)Google Scholar
  36. 36.
    Recker, J.C., Mendling, J.: On the translation between BPMN AND BPEL: conceptual mismatch between process modeling languages. In: CAISE Workshops, pp. 521–532 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Lars Ackermann
    • 1
  • Stefan Schönig
    • 1
    • 2
  • Stefan Jablonski
    • 1
  1. 1.University of BayreuthBayreuthGermany
  2. 2.Vienna University of Economics and BusinessViennaAustria

Personalised recommendations