Advertisement

An Entailment Procedure for Kleene Answer Set Programs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10053)

Abstract

Classical Answer Set Programming is a widely known knowledge representation framework based on the logic programming paradigm that has been extensively studied in the past decades. Semantic theories for classical answer sets are implicitly three-valued in nature, yet with few exceptions, computing classical answer sets is based on translations into classical logic and the use of SAT solving techniques. In this paper, we introduce a variation of Kleene three-valued logic with strong connectives, \({\text {R}_3}\), and then provide a sound and complete proof procedure for \({\text {R}_3}\) based on the use of signed tableaux. We then define a restriction on the syntax of \({\text {R}_3}\) to characterize Kleene ASPs. Strongly-supported models, which are a subset of \({\text {R}_3}\) models are then defined to characterize the semantics of Kleene ASPs. A filtering technique on tableaux for \({\text {R}_3}\) is then introduced which provides a sound and complete tableau-based proof technique for Kleene ASPs. We then show a translation and semantic correspondence between Classical ASPs and Kleene ASPs, where answer sets for normal classical ASPs are equivalent to strongly-supported models. This implies that the proof technique introduced can be used for classical normal ASPs as well as Kleene ASPs. The relation between non-normal classical and Kleene ASPs is also considered.

References

  1. 1.
    Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  2. 2.
    Bogaerts, B., Vennekens, J., Denecker, M.: Grounded fixpoints and their applications in knowledge representation. Artif. Intell. 224, 51–71 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brewka, G., Niemelä, I., Truszczynski, M.: Answer set optimization. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th IJCAI, pp. 867–872. Morgan Kaufmann (2003)Google Scholar
  4. 4.
    Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl. Data Eng. 5(2), 282–292 (1993)CrossRefGoogle Scholar
  5. 5.
    Denecker, M., Marek, V., Truszczynski, M.: Stable operators, well-founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 127–144. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  6. 6.
    Doherty, P.: A constraint-based approach to proof procedures for multi-valued logics. In: Proceedings of the 1st World Conference Fundamentals of AI (WOCFAI), pp. 165–178. Springer (1991)Google Scholar
  7. 7.
    Doherty, P., Szałas, A.: Stability, supportedness, minimality and Kleene Answer Set Programs. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Representation, Logic Programming, and Abstract Argumentation. LNCS (LNAI), vol. 9060, pp. 125–140. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-14726-0_9 Google Scholar
  8. 8.
    Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set programming with bounded predicate arities and implications. Ann. Math. Artif. Intell. 51(2–4), 123–165 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application to nonmonotonic logics. In: Miller, D. (ed.) Proceedings of the Logic Programming, pp. 266–278 (1993)Google Scholar
  10. 10.
    Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods Logic Comput. Sci. 1, 51–60 (1994)Google Scholar
  11. 11.
    Fitting, M.: A Kripke-Kleene semantics for logic programs. J. Logic Program. 2(4), 295–312 (1985)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Fitting, M.: The family of stable models. J. Logic Program. 17(2–4), 197–225 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM Trans. Comput. Log. 14(2), 15:1–15:40 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents - The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  16. 16.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the International Logic Programming, pp. 1070–1080. MIT Press (1988)Google Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)CrossRefMATHGoogle Scholar
  18. 18.
    Hähnle, R.: Uniform notation of tableau rules for multiple-valued logics. In: ISMVL, pp. 238–245 (1991)Google Scholar
  19. 19.
    Kleene, S.C.: On a notation for ordinal numbers. Symbolic Logic 3, 150–155 (1938)CrossRefMATHGoogle Scholar
  20. 20.
    Kunen, K.: Negation in logic programming. J. Log. Program. 4(4), 289–308 (1987)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: unfounded sets, fixpoint semantics, and computation. Inf. Comput. 135(2), 69–112 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lierler, Y.: Relating constraint answer set programming languages and algorithms. Artif. Intell. 207, 1–22 (2014)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15025-8_24 CrossRefGoogle Scholar
  25. 25.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif. Intell. 157(1–2), 115–137 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Łukasiewicz, J.: O logice trójwartościowej (in Polish). Ruch filozoficzny 5, 170–171 (1920). English translation: On three-valued logic. In: Borkowski, L. (ed.) Selected works by Jan Łukasiewicz, pp. 87–88. North-Holland, Amsterdam (1970)Google Scholar
  27. 27.
    McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. 13(1–2), 27–39 (1980)CrossRefMATHGoogle Scholar
  28. 28.
    Murray, N., Rosenthal, E.: Adapting classical inference techniques to multiple-valued logics using signed formulas. Fundam. Inform. 21(3), 237–253 (1994)MathSciNetMATHGoogle Scholar
  29. 29.
    Pearce, D.: Equilibrium logic. Ann. Math. AI 47(1–2), 3–41 (2006)MathSciNetMATHGoogle Scholar
  30. 30.
    Pearce, D., Guzmán, I.P., Valverde, A.: Computing equilibrium models using signed formulas. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 688–702. Springer, Heidelberg (2000). doi: 10.1007/3-540-44957-4_46 CrossRefGoogle Scholar
  31. 31.
    Przymusinski, T.: Stable semantics for disjunctive programs. New Gener. Comput. 9(3/4), 401–424 (1991)CrossRefMATHGoogle Scholar
  32. 32.
    Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Seipel, D., Minker, J., Ruiz, C.: A characterization of the partial stable models for disjunctive databases. In: Małuszyński, J. (ed.) Logic Programming Symposium, pp. 245–259 (1997)Google Scholar
  35. 35.
    Shepherdson, J.C.: A sound and complete semantics for a version of negation as failure. Theor. Comput. Sci. 65(3), 343–371 (1989)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Smullyan, R.: First-Order Logic. Dover Publications, Mineola (1968)CrossRefMATHGoogle Scholar
  38. 38.
    Stamate, D.: Assumption based multi-valued semantics for extended logic programs. In: 36th IEEE International Symposium on ISMVL, p. 10. IEEE Computer Society (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations