Reactive Trace Gas and Aerosol Fluxes

  • Andreas Held
  • Malte Julian Deventer
  • Franz X. Meixner
  • Sebastian Schmitt
  • Matthias Sörgel
  • Linda Voß
  • Veronika Wolff
Part of the Ecological Studies book series (ECOLSTUD, volume 229)


Quantifying the atmosphere-surface exchange of reactive trace gases and aerosols is extremely important for a full understanding of biogeochemical cycles and their implications for air quality and climate. However, turbulent fluxes of reactive gases such as ozone and volatile organic compounds (VOC) as well as aerosol particles are still difficult to measure. Chemical reactions contribute to changes in trace gas or aerosol concentrations, and production or loss processes have to be carefully separated from turbulent transport. Also, for many trace gas measurements and for size-resolved and chemically speciated aerosol measurements, instruments are limited with respect to time resolution, sensitivity, and accuracy, which restricts their application in micrometeorological techniques. Here, we present flux measurements of reactive trace gases and aerosols above tall vegetation. We focus on ozone deposition and its implications for the NO/NO2/O3 triad, biogenic emissions of volatile organic compounds and their subsequent oxidation reactions, and finally, turbulent aerosol fluxes in a spruce forest ecosystem.


Nitric Oxide Deposition Flux Turbulent Transport Emission Flux Volatile Organic Compound Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research summarized in this chapter was funded by the Federal Ministry of Education, Science, Research and Technology (BMBF, PT BEO 51-0339476 C, and PT UKF 07ATF25) and the German Science Foundation (DFG) in the first EGER period (IOP1/2: ME 4100/4-1) and in the second EGER period (IOP3: PAK 446), as well as HE 5214/4-1. The authors acknowledge support by all participants of the BEWA 2000 and EGER field experiments and by the technical staff of the University of Bayreuth. Scientific contributions and instrumental support by Otto Klemm (WWU Münster, Germany) are gratefully acknowledged. The 2013 VOC REA flux measurements were supported by A. A. Turnipseed and A. B. Guenther, then at the National Center for Atmospheric Research (Boulder, Colorado, USA).


  1. Altimir N, Kolari P, Tuovinen J-P, Vesala T, Bäck J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeoscience 3:209–228CrossRefGoogle Scholar
  2. Bargsten A, Falge E, Pritsch K, Huwe B, Meixner FX (2010) Laboratory measurements of nitric oxide release from forest soil with a thick organic layer under different understory types. Biogeoscience 7:1425–1441CrossRefGoogle Scholar
  3. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 571–657Google Scholar
  4. Breuninger C, Oswald R, Kesselmeier J, Meixner FX (2012) The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field. Atmos Meas Tech 5:955–989CrossRefGoogle Scholar
  5. Breuninger C, Meixner FX, Kesselmeier J (2013) Field investigations of nitrogen dioxide (NO2) exchange between plants and the atmosphere. Atmos Chem Phys 13:773–790CrossRefGoogle Scholar
  6. Deventer MJ, Held A, El-Madany TS, Klemm O (2015) Size-resolved eddy covariance fluxes of nucleation to accumulation mode aerosol particles over a coniferous forest. Agric Forest Meteorol 214–215:328–340CrossRefGoogle Scholar
  7. Fares S, Loreto F, Kleist E, Wildt J (2008) Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biol 10:44–54CrossRefPubMedGoogle Scholar
  8. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower troposphere. Academic Press, San Diego, CA, p. 969Google Scholar
  9. Foken T, Meixner FX et al (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950CrossRefGoogle Scholar
  10. Forkel R, Rappenglück B, Steinbrecher R, Klemm O, Held A, Graus M, Grabmer W, Hansel A (2006) Trace gas exchange and gas phase chemistry in a Norway spruce forest: a study with a coupled 1-dimensional canopy atmospheric chemistry emission model. Atmos Environ 40:S28–S42CrossRefGoogle Scholar
  11. Fuentes JD, Gillespie TJ, Den Hartog G, Neumann HH (1992) Ozone deposition onto a deciduous forest during dry and wet conditions. Agric Forest Meteorol 62:1–18CrossRefGoogle Scholar
  12. Ganzeveld L, Valverde-Canossa J, Moortgat GK, Steinbrecher R (2006a) Evaluation of peroxide exchanges over a coniferous forest in a single-column chemistry-climate model. Atmos Environ 40:S68–S80CrossRefGoogle Scholar
  13. Ganzeveld L, Klemm O, Rappenglück B, Valverde-Canossa J (2006b) Evaluation of meteorological parameters over a coniferous forest in a single-column chemistry-climate model. Atmos Environ 40:S21–S27CrossRefGoogle Scholar
  14. Grabmer W, Kreuzwieser J, Wisthaler A, Cojocariu C, Graus M, Rennenberg H, Steigner D, Steinbrecher R, Hansel A (2006) VOC emissions from Norway spruce (Picea abies L. [Karst]) twigs in the field—Results of a dynamic enclosure study. Atmos Environ 40:S128–S137CrossRefGoogle Scholar
  15. Graus M, Hansel A, Wisthaler A, Lindinger C, Forkel R, Hauff K, Klauer M, Pfichner A, Rappenglück B, Steigner D, Steinbrecher R (2006) A relaxed-eddy-accumulation method for the measurement of isoprenoid canopy-fluxes using an online gas-chromatographic technique and PTR-MS simultaneously. Atmos Environ 40:S43–S54CrossRefGoogle Scholar
  16. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492CrossRefGoogle Scholar
  17. Güsten H, Heinrich G (1996) On-line measurements of ozone surface fluxes: Part I. Methodology and instrumentation. Atmos Environ 30:897–909CrossRefGoogle Scholar
  18. Hasson AS, Ho AW, Kuwata KT, Paulson SE (2001) Production of stabilized Criegee intermediates and peroxides in the gas phase ozonolysis of alkenes. 2. Asymmetric and biogenic alkenes. J Geophys Res 106:34143–34153CrossRefGoogle Scholar
  19. Held A, Klemm O (2006) Direct measurement of turbulent particle exchange with a twin CPC eddy covariance system. Atmos Environ 40:S92–102CrossRefGoogle Scholar
  20. Held A, Hinz K-P, Trimborn A, Spengler B, Klemm O (2003) Towards direct measurement of turbulent vertical fluxes of compounds in atmospheric aerosol particles. Geophys Res Lett 30:2016. doi: 10.1029/2003GL017854 CrossRefGoogle Scholar
  21. Held A, Nowak A, Birmili W, Wiedensohler A, Forkel R, Klemm O (2004) Observations of particle formation and growth in a mountainous forest region in central Europe. J Geophys Res 109:D23204. doi: 10.1029/2004JD005346 CrossRefGoogle Scholar
  22. Held A, Nowak A, Wiedensohler A, Klemm O (2006) Field measurements and size-resolved model simulations of turbulent particle transport to a forest canopy. J Aerosol Sci 37:786–798CrossRefGoogle Scholar
  23. Karl T, Guenther A, Jordan A, Fall R, Lindinger W (2001) Eddy covariance measurement of biogenic oxygenated VOC emissions from hay harvesting. Atmos Environ 35:491–495CrossRefGoogle Scholar
  24. Katata G, Nagai H, Zhang L, Held A, Sera D, Klemm O (2011) Development of an atmosphere-soil-vegetation model for investigation of radioactive materials transport in the terrestrial biosphere. Prog Nuclear Sci Technol 2:530–537CrossRefGoogle Scholar
  25. Klemm O (2004) Trace gases and particles in the atmospheric boundary layer at the Waldstein site: present state and his historic trends. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 45–58CrossRefGoogle Scholar
  26. Klemm O, Mangold A (2001) Ozone deposition at a forest site in NE Bavaria. Water Air Soil Poll: Focus 1:223–232CrossRefGoogle Scholar
  27. Klemm O, Milford C, Sutton MA, Spindler G, van Putten E (2002) A climatology of leaf surface wetness. Theor Appl Climatol 71:107–117CrossRefGoogle Scholar
  28. Klemm O, Mangold A, Held A (2004) Turbulent deposition of ozone to a mountainous forest ecosystem. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 203–213CrossRefGoogle Scholar
  29. Klemm O, Held A, Forkel R, Gasche R, Kanter H-J, Rappenglück B, Steinbrecher R, Müller K, Plewka A, Cojocariu C, Kreuzwieser J, Valverde-Canossa J, Schuster G, Moortgat GK, Graus M, Hansel A (2006) Experiments on forest/atmosphere exchange: climatology and fluxes during two summer campaigns in NE Bavaria. Atmos Environ 40:S3–20CrossRefGoogle Scholar
  30. Lenschow DH (1982) Reactive trace species in the boundary layer from a micrometeorological perspective. J Meteor Soc Japan 60:472–480Google Scholar
  31. Lerdau MT, Munger JW, Jacob DJ (2000) The NO2 flux conundrum. Science 289:2291–2293CrossRefGoogle Scholar
  32. Lindinger W, Hansel A, Jordan A (1998) Proton-transfer reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels. Chem Soc Rev 27:347–354CrossRefGoogle Scholar
  33. Müller M, Graus M, Ruuskanen TM, Schnitzhofer R, Bamberger I, Kaser L, Titzmann T, Hörtnagl L, Wohlfahrt G, Karl T, Hansel A (2010) First eddy covariance flux measurements by PTR-TOF. Atmos Meas Tech 3:387–395CrossRefPubMedPubMedCentralGoogle Scholar
  34. Peters K, Bruckner-Schatt G (1995) The dry deposition of gaseous and particulate nitrogen compounds to a spruce stand. Water Air Soil Poll 85:2217–2222CrossRefGoogle Scholar
  35. Peters K, Eiden R (1992) Modelling the dry deposition velocity of aerosol particles to a spruce forest. Atmos Environ 26A:2555–2564CrossRefGoogle Scholar
  36. Pilegaard K, Jensen NO, Hummelshoj P (1995) Seasonal and diurnal variation in the deposition velocity of ozone over a spruce forest in Denmark. Water Air Soil Poll 85:2223–2228CrossRefGoogle Scholar
  37. Plake D, Sörgel M, Stella P, Held A, Trebs I (2015) Influence of meteorology and anthropogenic pollution on chemical flux divergence of the NO–NO2–O3 triad above and within a natural grassland canopy. Biogeoscience 12:945–959CrossRefGoogle Scholar
  38. Pryor SC, Klemm O (2004) Experimentally derived estimates of nitric acid dry deposition velocity and viscous sub-layer resistance at a conifer forest. Atmos Environ 38:2769–2777CrossRefGoogle Scholar
  39. Pryor SC, Barthelmie RJ, Jensen B, Jensen NO, Sörensen LL (2002) HNO3 fluxes to a deciduous forest derived using gradient and REA methods. Atmos Environ 36:5993–5999CrossRefGoogle Scholar
  40. Pryor SC, Klemm O, Barthelmie R (2003) An investigation of the magnitude of resistance terms in dry deposition fluxes to a conifer forest. In: BACCI workshop on surface flux, micrometeorology and chemistry, Risø, 11–12 November 2003Google Scholar
  41. Rinne J, Markkanen T, Ruuskanen TM, Petäjä T, Keronen P, Tang MJ, Crowley JN, Rannik U, Vesala T (2012) Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model. Atmos Chem Phys 12:4843–4854CrossRefGoogle Scholar
  42. Schmitt SH (2013) Fluxes of monoterpenes from a spruce forest: establishing sampling and analytical procedures. MSc Thesis, University of Bayreuth, GermanyGoogle Scholar
  43. Schröter M, Obermeier A, Brüggemann D, Klemm O (2002) Application of a ground-based Lidar for studies of the dynamics of ozone in a mountainous basin. Environ Sci Pollut Res 9:381–384CrossRefGoogle Scholar
  44. Slinn WGN (1982) Predictions for particle deposition to vegetative surfaces. Atmos Environ 16:1785–1794CrossRefGoogle Scholar
  45. Smiatek G, Steinbrecher R (2006) Temporal and spatial variation of forest VOC emissions in Germany in the decade 1994–2003. Atmos Environ 40:S166–S177CrossRefGoogle Scholar
  46. Steinbrecher R, Klauer M, Hauff K, Stockwell R, Jaeschke W, Dietrich W, Herbert F (2000) Biogenic and anthropogenic fluxes of non-methane hydrocarbons over an urban-impacted forest, Frankfurter Stadtwald, Germany. Atmos Environ 34:3779–3788CrossRefGoogle Scholar
  47. Steinbrecher R, Rappenglück B, Hansel A, Graus M, Klemm O, Held A, Wiedensohler A, Nowak A (2004) Vegetation-atmospheric interactions: the emissions of biogenic volatile organic compounds (BVOC) and their relevance to atmospheric particle dynamics. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, A German case study, Ecological studies, vol 172. Springer, Heidelberg, pp 215–235CrossRefGoogle Scholar
  48. Trimborn A, Hinz K-P, Spengler B (2000) Online analysis of atmospheric particles with a transportable laser mass spectrometer. Aerosol Sci Technol 33:191–201CrossRefGoogle Scholar
  49. Tsokankunku A (2014) Fluxes of the NO-O3-NO2 triad above a spruce forest canopy in south-eastern Germany. PhD Thesis, University of Bayreuth, GermanyGoogle Scholar
  50. Valverde-Canossa J (2004) Sources and sinks of organic peroxides in the planetary boundary layer. PhD Thesis, Johannes Gutenberg Universität Mainz, GermanyGoogle Scholar
  51. Valverde-Canossa J, Ganzeveld L, Rappenglück B, Steinbrecher R, Klemm O, Schuster G, Moortgat GK (2006) First measurements of H2O2 and organic peroxides surface fluxes by the relaxed eddy-accumulation technique. Atmos Environ 40:S55–S67CrossRefGoogle Scholar
  52. Vilà-Guerau de Arellano J, Duynkerke PG, Builtjes PJH (1993) The divergence of the turbulent diffusion flux in the surface layer due to chemical reactions: the NO-O3-NO2 system. Tellus 45B:23–33CrossRefGoogle Scholar
  53. Voß L (2015) Measurements and modeling of ozone fluxes in and above Norway spruce canopies. PhD Thesis, Johannes Gutenberg University Mainz, GermanyGoogle Scholar
  54. Wehner B, Siebert H, Hermann M, Ditas F, Wiedensohler A (2011) Characterisation of a new Fast CPC and its application for atmospheric particle measurements. Atmos Meas Tech 4:823–833CrossRefGoogle Scholar
  55. Wolff V, Trebs I, Ammann C, Meixner FX (2010a) Aerodynamic gradient measurements of the NH3-HNO3-NH4NO3 triad using a wet chemical instrument: an analysis of precision requirements and flux errors. Atmos Meas Tech 3:187–208CrossRefGoogle Scholar
  56. Wolff V, Trebs I, Foken T, Meixner FX (2010b) Exchange of reactive nitrogen compounds: concentrations and fluxes of total ammonium and total nitrate above a spruce canopy. Biogeoscience 7:1729–1744CrossRefGoogle Scholar
  57. Zhang L, Gong S, Padro J, Barrie L (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos Environ 35:549–560CrossRefGoogle Scholar
  58. Zhang L, Brook JR, Vet R (2002) On ozone dry deposition – with emphasis on non-stomatal uptake and wet canopies. Atmos Environ 36:4787–4799CrossRefGoogle Scholar
  59. Zhu Z, Tsokankunku A, Plake D, Falge E, Foken T, Meixner FX (2009) Multi-level eddy covariance measurements for ozone fluxes above, within and below spruce forest canopy. In: Luers J, Foken T (eds) Proceedings of the international conference of atmospheric transport and chemistry in forest ecosystems. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol. ISSN 1614–8916. 40:32Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Held
    • 1
    • 2
  • Malte Julian Deventer
    • 3
  • Franz X. Meixner
    • 4
  • Sebastian Schmitt
    • 5
  • Matthias Sörgel
    • 4
  • Linda Voß
    • 6
  • Veronika Wolff
    • 7
  1. 1.Atmospheric ChemistryUniversity of BayreuthBayreuthGermany
  2. 2.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  3. 3.Department of GeographyUniversity of CaliforniaBerkeleyUSA
  4. 4.Max Planck Institute for ChemistryMainzGermany
  5. 5.Forschungszentrum JülichJülichGermany
  6. 6.GEO-NET Umweltconsulting GmbHHannoverGermany
  7. 7.AgroscopeZürichSwitzerland

Personalised recommendations