Trace Gas Exchange at the Forest Floor

  • Matthias Sörgel
  • Michael Riederer
  • Andreas Held
  • Daniel Plake
  • Zhilin Zhu
  • Thomas Foken
  • Franz X. Meixner
Part of the Ecological Studies book series (ECOLSTUD, volume 229)


Exchange conditions at the forest floor are complex due to the heterogeneity of sources and sinks and the inhomogeneous radiation but are important for linking soil respiration to measurements in the trunk space or above canopy. Far more attention has therefore been paid to above and within canopy flows, but even studies that addressed forest floor exchange do not present measurements below 1 m or 2 m. We used a multilayer model that explicitly resolves the laminar layer, the buffer layer, and the turbulent layer to calculate fluxes from the measured profiles in the lowest meter above ground and to calculate effective surface concentrations from given fluxes. The calculated fluxes were compared to measured eddy covariance fluxes of sensible heat and O3 and to chamber derived soil fluxes of CO2 and 222Rn. Sensible heat fluxes agreed surprisingly well given the heterogeneity of radiative heating and the generally low fluxes (max. 25 W m−2). The chamber fluxes turned out to be not comparable as the chamber fluxes were too low, probably due to one of the well-known problems of enclosures such as pressure differences, disturbed gradients and exclusion of naturally occurring turbulence events and surface cooling. The O3 fluxes agreed well for high O3 values reaching down to the forest floor during full coupling of the canopy by coherent structures. During most of the time, the model overestimated the fluxes as chemical reactions were dominating within the profile. One new approach was to calculate the effective surface concentration from a given flux and compare this to measured surface concentrations. This allowed the identification of situations with a coupled and decoupled forest floor layer, which has important consequences for respiration measurements in the trunk space or above canopy and should be considered in upcoming studies.


Forest Floor Nitrogen Oxide Eddy Covariance Chamber Flux Multilayer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support by the German Science Foundation (DFG projects EGER, FO 226/16-1, ME 2100/4-1 and ZE 792/4-1) and by the Max Planck Society. For borrowing a static chamber and two radon monitors, we would like to thank Franz Conen from the Department of Environmental Sciences of the University of Basel. We would like to thank Johannes Lüers and Korbinian Hens for sharing their experience with radon measurements at the Waldstein site.


  1. Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric For Meteorol 131:225–232CrossRefGoogle Scholar
  2. Baldocchi DD, Meyers TP (1991) Trace gas exchange above the floor of a deciduous forest: 1. Evaporation and CO2 efflux. J Geophys Res 96(D4):7271–7728CrossRefGoogle Scholar
  3. Bloomer BJ, Vinnikov KY, Dickerson RR (2010) Changes in seasonal and diurnal cycles of ozone and temperature in the eastern U.S. Atmos Environ 44:2543–2551CrossRefGoogle Scholar
  4. Damköhler G (1940) Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z Elektrochem 46:601–652Google Scholar
  5. Davidson EA (1992) Pulses of nitric oxide and nitrous oxide flux following wetting of dry soil: an assessment of probable sources and importance relative to annual fluxes. Ecol Bull 42:149–155Google Scholar
  6. Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37CrossRefGoogle Scholar
  7. Foken T (1979) Vorschlag eines verbesserten Energieaustauschmodells mit Berücksichtigung der molekularen Grenzschicht der Atmosphäre. Z Meteorol 29:32–39Google Scholar
  8. Foken T (1984) The parametrisation of the energy exchange across the air-sea interface. Dyn Atmos Oceans 8:297–305CrossRefGoogle Scholar
  9. Foken T (2008) Micrometeorology. Springer, Berlin, Heidelberg, 308 pp, (2nd edition 2017)Google Scholar
  10. Foken T, Kitajgorodskij SA, Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Bound-Lay Meteorol 15:289–300CrossRefGoogle Scholar
  11. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950CrossRefGoogle Scholar
  12. Horii CP, Munger JW, Wofsy S, Zahniser M, Nelson D, McManus JB (2004) Fluxes of nitrogen oxides over a temperate deciduous forest. J Geophys Res 109:D08305CrossRefGoogle Scholar
  13. Hübner J, Siebicke L, Lüers J, Foken T (2016) Forest climate in vertical and horizontal scales. In: Foken T (ed) Energy and Matter Fluxes of a Spruce Forest Ecosystem. Springer, Berlin, HeidelbergGoogle Scholar
  14. Kimball BA, Lemon ER (1971) Air turbulence effects upon soil gas exchange. Soil Sci Soc Am J 35:16–21CrossRefGoogle Scholar
  15. Kutzbach L, Schneider J, Sachs T, Giebels M, Nykänen H, Shurpali NJ, Martikainen PJ, Alm J, Wilmking M (2007) CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogiosciences 4:1005–1025CrossRefGoogle Scholar
  16. Launiainen S, Rinne J, Pumpanen J, Kulmala L, Kolari P, Keronen P, Siivola E, Pohja T, Hari P, Vesala T (2005) Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ Res 10:569–588Google Scholar
  17. Lehmann BE, Lehmann M, Neftel A, Gut A, Tarakanov SV (1999) 220 Radon calibration of near-surface turbulent gas transport. Geophys Res Lett 5:607–610CrossRefGoogle Scholar
  18. Lehmann BE, Neftel A, Tarakanov SV (2001) Continuous on-line calibration of diffusive soil-atmosphere trace gas transport using vertical 220Rn- and 222Rn activity profiles. Radiochim Acta 11–12:839–843Google Scholar
  19. Lehmann BE, Ihlya B, Salzmann S, Conen F, Simon E (2004) An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil. Radiat Meas 38:43–50CrossRefGoogle Scholar
  20. Leighton PA (1961) Photochemistry of air pollution. Academic Press, New YorkGoogle Scholar
  21. Lüers J, Bareiss J (2010) The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site—the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Atmos Chem Phys 10:157–168CrossRefGoogle Scholar
  22. Lund CP, Riley WJ, Pierce LL, Field B (1999) The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Glob Chang Biol 5:269–281CrossRefGoogle Scholar
  23. Misson L, Baldocchi DD, Black TA, Blanken PD, Brunet Y, Curiel Yuste J, Dorsey JR, Falk M, Granier A, Irvine MR, Jarosz N, Lamaud E, Launiainen S, Law BE, Longdoz B, Loustau D, McKay M, Paw U KT, Vesala T, Vickers D, Wilson KB, Goldstein AH (2007) Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric For Meteorol 144:14–31CrossRefGoogle Scholar
  24. Nordbo A, Järvi L, Vesala T (2012) Revised eddy covariance flux calculation methodologies—effect on urban energy balance. Tellus Ser B 64:18184. doi: 10.3402/tellusb.v64i0.18184 CrossRefGoogle Scholar
  25. Plake D, Trebs I (2013) An automated system for selective and continuous measurements of vertical thoron profiles for the determination of transport times near the ground. Atmos Meas Tech 6:1017–1030CrossRefGoogle Scholar
  26. Richter SH, Skeib G (1984) Anwendung eines Verfahrens zur Parametrisierung des turbulenten Energieaustausches in der atmosphärischen Bodenschicht. Geod Geophys Veröff, R II 26:80–85Google Scholar
  27. Richter SH, Skeib G (1991) Ein Verfahren zur Parametrisierung von Austauschprozessen in der bodennahen Luftschicht. Abh Meteorol Dienstes DDR 146:15–22Google Scholar
  28. Riederer M, Serafimovich A, Foken T (2014) Eddy covariance—chamber flux differences and its dependence on atmospheric conditions. Atmos Meas Tech 7:1057–1064CrossRefGoogle Scholar
  29. Scholes MC, Martin R, Scholes RJ, Parsons D, Winstead E (1997) NO and N2O emissions from savanna soils following the first simulated rains of the season. Nutr Cycl Agroecosyst 48:115–122CrossRefGoogle Scholar
  30. Serafimovich A, Thomas C, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Lay Meteorol 140:429–451CrossRefGoogle Scholar
  31. Skeib G (1980) Zur Definition universeller Funktionen für die Gradienten von Windgeschwindigkeit und Temperatur in der bodennahen Luftschicht. Z Meteorol 30:23–32Google Scholar
  32. Sodemann H, Foken T (2005) Special characteristics of the temperature structure near the surface. Theor Appl Climatol 80:81–89CrossRefGoogle Scholar
  33. Sörgel M, Trebs I, Serafimovich A, Moravek A, Held A, Zetzsch C (2011) Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos Chem Phys 11:841–855CrossRefGoogle Scholar
  34. Subke JA, Tenhunen JD (2004) Direct measurements of CO2 flux below a spruce forest canopy. Agric For Meteorol 126:157–168CrossRefGoogle Scholar
  35. Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Lay Meteorol 123:317–337CrossRefGoogle Scholar
  36. Thomas C, Martin J, Goeckede M, Siqueira M, Foken T, Law B, Loescher H, Katul G (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148:1210–1229CrossRefGoogle Scholar
  37. Thomas CK, Kennedy AM, Selker JS et al (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface layer flow. Bound-Lay Meteorol 142:177–192. doi: 10.1007/s10546-011-9672-7 CrossRefGoogle Scholar
  38. U.S. EPA (2006) Air quality criteria for ozone and related photochemical oxidants. EPA/600/R-05/004aF-cF. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  39. Zeeman MJ, Eugster W, Thomas CK (2013) Concurrency of coherent structures and conditionally sampled daytime sub-canopy respiration. Bound-Lay Meteorol 146:1–15CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthias Sörgel
    • 1
  • Michael Riederer
    • 2
  • Andreas Held
    • 3
    • 4
  • Daniel Plake
    • 5
  • Zhilin Zhu
    • 6
  • Thomas Foken
    • 4
    • 7
  • Franz X. Meixner
    • 1
  1. 1.Max Planck Institute for Chemistry, Biogeochemistry DepartmentMainzGermany
  2. 2.Ostbayerische Technische Hochschule Regensburg, Regensburg Center of Energy and ResourcesRegensburgGermany
  3. 3.Atmospheric ChemistryUniversity of BayreuthBayreuthGermany
  4. 4.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  5. 5.UCL Umwelt Control Labor GmbHLünenGermany
  6. 6.Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
  7. 7.BischbergGermany

Personalised recommendations