Dynamics of Water Flow in a Forest Soil: Visualization and Modelling

  • Christina Bogner
  • Britta Aufgebauer
  • Oliver Archner
  • Bernd Huwe
Part of the Ecological Studies book series (ECOLSTUD, volume 229)


Soil water plays an important role in the terrestrial water and energy cycles. Its movement follows the gradient of the soil water potential and is most frequently described by the Richards equation. In this chapter, we focus on water fluxes in the vadose zone and model them with Water Heat and Nitrogen Simulation Model (WHNSIM) that solves the Richards equation numerically. We characterize the temporal dynamics of soil matric potentials measured at Coulissenhieb II and compare their complexity with modelled matric potential. Additionally, we summarize our previous studies on preferential flow—a common phenomenon in forest soils that cannot be modelled adequately by the Richards equation. The model WHNSIM reproduced the overall level of matric potentials in all depths. However, while it captured the complexity of the measurements in the upper soil, the matrix potentials in 90 cm depth were less complex indicating a more regular and damped signal. This result suggests that WHNSIM misses some important processes at least in the deeper soil. The soil water fluxes at Coulissenhieb II have a clear seasonal pattern with large fluxes occurring in spring during snow melt and small ones during dryer periods in summer. We could identify preferential flow in dye tracer experiments at the profile scale and attribute it mainly to macropore flow along root channels. Yet the identification and quantification of preferential pathways at the catchment scale remains challenging.


Matric Potential Preferential Flow Catchment Scale Root Water Uptake Richards Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Uwe Hell, Andreas Kolb and Gerhard Müller for assistance in the field. Dr. Tobias Zuber contributed to the initial model setup. This research was supported by the German Science Foundation (DFG Research Unit 561, mainly Hu 636/11-2,3).


  1. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102CrossRefPubMedGoogle Scholar
  2. Beven K, Germann P (2013) Macropores and water flow in soils revisited. Water Resour Res 49(6):3071–3092CrossRefGoogle Scholar
  3. Black T, Kelliher F, Wallace J, Stewart J, Monteith J, Jarvis P (1989) Processes controlling understorey evapotranspiration [and discussion]. Philos Trans R Soc Lond B Biol Sci 324(1223):207–231CrossRefGoogle Scholar
  4. Bogner C, Wolf B, Schlather M, Huwe B (2008) Analysing flow patterns from dye tracer experiments in a forest soil using extreme value statistics. Eur J Soil Sci 59(1):103–113CrossRefGoogle Scholar
  5. Bogner C, Gaul D, Kolb A, Schmiedinger I, Huwe B (2010) Investigating flow mechanisms in a forest soil by mixed-effects modelling. Eur J Soil Sci 61:1079–1090CrossRefGoogle Scholar
  6. Bogner C, Borken W, Huwe B (2012) Impact of preferential flow on soil chemistry of a podzol. Geoderma 175–176:37–46CrossRefGoogle Scholar
  7. Bogner C, y Widemann BT, Lange H (2013) Characterising flow patterns in soils by feature extraction and multiple consensus clustering. Ecol Inform 15:44–52CrossRefGoogle Scholar
  8. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on c and n mineralization and fluxes in soils. Glob Chang Biol 15(4):808–824CrossRefGoogle Scholar
  9. Broomhead D, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2-3):217–236CrossRefGoogle Scholar
  10. Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33(6):729–738CrossRefGoogle Scholar
  11. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113(2):151–161CrossRefGoogle Scholar
  12. Fadlallah B, Chen B, Keil A, Príncipe J (2013) Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys Rev E 87(2):022911CrossRefGoogle Scholar
  13. Flühler H, Durner W, Flury M (1996) Lateral solute mixing processes - a key for understanding field-scale transport of water and solutes. Geoderma 70(2-4):165–183CrossRefGoogle Scholar
  14. Garland J, James R, Bradley E (2014) Model-free quantification of time-series predictability. Phys Rev E 90(5):052910CrossRefGoogle Scholar
  15. Gaul D, Hertel D, Borken W, Matzner E, Leuschner C (2008) Effects of experimental drought on the fine root system of mature Norway spruce. For Ecol Manag 256(5):1151–1159CrossRefGoogle Scholar
  16. Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz catchments in ne Bavaria, Germany. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. Ecological studies, vol 172. Springer, Berlin, Heidelberg, pp 15–44CrossRefGoogle Scholar
  17. Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with missing values. J Stat Plan Inference 137(8):2642–2653CrossRefGoogle Scholar
  18. Golyandina N, Nekrutkin V, Zhigljavsky AA (2001) Analysis of time series structure: SSA and related techniques. CRC, Boca Raton, FLCrossRefGoogle Scholar
  19. Granier A, Reichstein M, Bréda N, Janssens I, Falge E, Ciais P, Grünwald T, Aubinet M, Berbigier P, Bernhofer C et al (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143(1):123–145CrossRefGoogle Scholar
  20. Greiffenhagen A (2005) Einfluss der Humusauflage auf das Benetzungsverhalten und den Wasserhaushalt von Kiefernstandorten. PhD thesis, Institut für Ökologie, Technische Universität Berlin, GermanyGoogle Scholar
  21. Hagedorn F, Bundt M (2002) The age of preferential flow paths. Geoderma 108(1-2):119–132CrossRefGoogle Scholar
  22. Hendrickx JMH, Flury M (2001) Uniform and preferential flow mechanisms in the vadose zone. In: Council NR (ed) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, pp 149–187Google Scholar
  23. Hentschel K, Borken W, Zuber T, Bogner C, Huwe B, Matzner E (2009) Effects of soil frost on nitrogen net mineralization, soil solution chemistry and seepage losses in a temperate forest soil. Glob Chang Biol 15(4):825–836CrossRefGoogle Scholar
  24. Hillel D (1998) Environmental soil physics. Academic, New YorkGoogle Scholar
  25. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21CrossRefGoogle Scholar
  26. Huwe B, Totsche K (1995) Deterministic and stochastic modelling of water, heat and nitrogen dynamics on different scales with whnsim. J Contam Hydrol 20(3):265–284CrossRefGoogle Scholar
  27. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, RomeGoogle Scholar
  28. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, De Jeu R et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954CrossRefPubMedGoogle Scholar
  29. Kaiser K, Guggenberger G (2005) Storm flow flushing in a structured soil changes the composition of dissolved organic matter leached into the subsoil. Geoderma 127(3):177–187CrossRefGoogle Scholar
  30. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon C, Kanae S, Kowalczyk E, Lawrence D et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140CrossRefPubMedGoogle Scholar
  31. Köstner B, Tenhunen J, Alsheimer M, Wedler M (2001) Controls on evapotranspiration in a spruce forest catchment of the Fichtelgebirge. In: Tenhunen J, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in Central Europe. Ecological Studies, vol 147. Springer, Berlin, Heidelberg, pp 377–415CrossRefGoogle Scholar
  32. Lin H (2006) Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the shale hills catchment. Vadose Zone J 5(1):317–340CrossRefGoogle Scholar
  33. Lischeid G, Kolb A, Alewell C (2002) Apparent translatory flow in groundwater recharge and runoff generation. J Hydrol 265(1):195–211CrossRefGoogle Scholar
  34. Mahecha MD, Reichstein M, Jung M, Seneviratne SI, Zaehle S, Beer C, Braakhekke MC, Carvalhais N, Lange H, Le Maire G, Moors E (2010) Comparing observations and process-based simulations of biosphere-atmosphere exchanges on multiple timescales. J Geophys Res 115(G2):G02003CrossRefGoogle Scholar
  35. Matzner E, Borken W (2008) Do freeze-thaw events enhance c and n losses from soils of different ecosystems? A review. Eur J Soil Sci 59(2):274–284CrossRefGoogle Scholar
  36. Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207CrossRefGoogle Scholar
  37. Miralles DG, Teuling AJ, van Heerwaarden CC, de Arellano JVG (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7(5):345–349CrossRefGoogle Scholar
  38. Moore I, Burch G, Wallbrink P (1986) Preferential flow and hydraulic conductivity of forest soils. Soil Sci Soc Am J 50(4):876–881CrossRefGoogle Scholar
  39. Nadezhdina N, Čermák J, Gašpárek J, Nadezhdin V, Prax A (2006) Vertical and horizontal water redistribution in norway spruce (Picea abies) roots in the Moravian upland. Tree Physiol 26(10):1277–1288CrossRefPubMedGoogle Scholar
  40. Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J et al (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3(4):431–444CrossRefGoogle Scholar
  41. Phillips N, Oren R (2001) Intra and inter-annual variation in transpiration of a pine forest. Ecol Appl 11(2):385–396CrossRefGoogle Scholar
  42. Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193(4):830–841CrossRefPubMedGoogle Scholar
  43. Roberts J (1983) Forest transpiration: a conservative hydrological process? J Hydrol 66(1):133–141CrossRefGoogle Scholar
  44. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3):125–161CrossRefGoogle Scholar
  45. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  46. Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Climate 21(3):432–458CrossRefGoogle Scholar
  47. Sidle RC, Noguchi S, Tsuboyama Y, Laursen K (2001) A conceptual model of preferential flow systems in forested hillslopes: evidence of self-organization. Hydrol Process 15(10):1675–1692CrossRefGoogle Scholar
  48. Suseela V, Conant RT, Wallenstein MD, Dukes JS (2012) Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob Chang Biol 18(1):336–348CrossRefGoogle Scholar
  49. Taylor CM, de Jeu RA, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489(7416):423–426CrossRefPubMedGoogle Scholar
  50. Warren JM, Meinzer FC, Brooks JR, Domec JC, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173(4):753–765CrossRefPubMedGoogle Scholar
  51. Weyer C, Peiffer S, Schulze K, Borken W, Lischeid G (2014) Catchments as heterogeneous and multi-species reactors: an integral approach for identifying biogeochemical hot-spots at the catchment scale. J Hydrol 519:1560–1571CrossRefGoogle Scholar
  52. Zirlewagen D, von Wilpert K (2001) Modeling water and ion fluxes in a highly structured, mixed-species stand. For Ecol Manag 143(1):27–37CrossRefGoogle Scholar
  53. Zuber T (2007) Untersuchungen zum Wasserhaushalt eines Fichtenwaldstandorts unter Berücksichtigung der Humusauflage. PhD thesis, University of Bayreuth, GermanyGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christina Bogner
    • 1
    • 2
  • Britta Aufgebauer
    • 1
    • 2
  • Oliver Archner
    • 3
  • Bernd Huwe
    • 2
    • 4
  1. 1.Chair of Ecological ModellingUniversity of BayreuthBayreuthGermany
  2. 2.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  3. 3.University of BayreuthBayCEER IT and Database Systems GroupBayreuthGermany
  4. 4.University of BayreuthSoil Physics GroupBayreuthGermany

Personalised recommendations