Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 113-135

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

Coherent Structures and Flux Coupling

  • Christoph K. Thomas
  • Andrei Serafimovich
  • Lukas Siebicke
  • Tobias Gerken
  • Thomas Foken
Chapter

Abstract

This chapter summarizes the significant findings of the research on coherent structures contributed by investigations conducted at the Waldstein-Weidenbrunnen site from several field campaigns. The description of the quasi-online wavelet detection algorithm and of the coherent flux computation method using a triple decomposition is followed by a presentation of their application to define and diagnose vertical and horizontal couplings in forest canopies. It is demonstrated that these exchange regimes provide physically and biologically meaningful proxies for the communication of air and integration of the spatially separated sinks and sources as a result of the stratified canopy architecture. We continue by presenting two innovative applications of the coherent forest exchange that include the computation of daytime respiration fluxes directly from above-canopy eddy-covariance measurements and the explanation of stationary gradients in the sub-canopy CO2 field causing systematic advection as a result of the spatial heterogeneity of the forest architecture. Advantages and limitations of both are discussed. The chapter concludes by formulating directions for future research and indicating new observational techniques that may have the potential to improve understanding and quantifying the forest coherent exchange.

References

  1. Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids. doi:10.1063/1.2717527 Google Scholar
  2. Antonia RA, Browne LWB, Bisset DK, Fulachier L (1987) A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds numbers. J Fluid Mech 184:423–444CrossRefGoogle Scholar
  3. Aubinet M, Feigenwinter C, Heinesch B et al (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150:655–664CrossRefGoogle Scholar
  4. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound Lay Meteorol 108:397–417CrossRefGoogle Scholar
  5. Bergström H, Högström U (1989) Turbulent exchange above a pine forest. II. Organized structures. Bound Lay Meteorol 49:231–263CrossRefGoogle Scholar
  6. Brunet Y, Collineau S (1994) Wavelet analysis of diurnal and nocturnal turbulence above a maize canopy. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic Press, San Diego, pp 129–150CrossRefGoogle Scholar
  7. Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Technol 7:349–352CrossRefGoogle Scholar
  8. Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound Lay Meteorol 112:129–157CrossRefGoogle Scholar
  9. Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Bound Lay Meteorol 107:429–444CrossRefGoogle Scholar
  10. Collineau S, Brunet Y (1993) Detection of turbulent coherent motions in a forest canopy. Part I: wavelet analysis. Bound Lay Meteorol 65:357–379Google Scholar
  11. Eder F, Serafimovich A, Foken T (2013) Coherent structures at a forest edge: properties, coupling and impact of secondary circulations. Bound Lay Meteorol 148:285–308CrossRefGoogle Scholar
  12. Finnigan JJ (1979) Turbulence in waving wheat. II. Structure of momentum transfer. Bound Lay Meteorol 16:213–236Google Scholar
  13. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208Google Scholar
  14. Foken T, Meixner FX, Falge E et al (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950. doi:10.5194/acp-12-1923-2012 CrossRefGoogle Scholar
  15. Gao W, Shaw RH, Paw U KT (1989) Observation of organized structures in turbulent flow within and above a forest canopy. Bound Lay Meteorol 47:349–377CrossRefGoogle Scholar
  16. Göckede M, Thomas C, Markkanen T et al (2007) Sensitivity of Lagrangian Stochastic footprints to turbulence statistics. Tellus B 59:577–586. doi:10.1111/j.1600-0889.2007.00275.x CrossRefGoogle Scholar
  17. Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Bound Lay Meteorol 106:147–170CrossRefGoogle Scholar
  18. Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Bound Lay Meteorol 83:117–137CrossRefGoogle Scholar
  19. Kallistratova MA, Kouznetsov RD (2004) Systematization of experimental data on forms and scales of coherent structures in the atmosphere. In: 12th international symposium on acoustic remote sensing, CambridgeGoogle Scholar
  20. Kanani-Suhring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: a large-eddy simulation study. Bound Lay Meteorol 155:1–27. doi:10.1007/s10546-014-9986-3 CrossRefGoogle Scholar
  21. Katul G, Goltz SM, Hsieh CI et al (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Bound Lay Meteorol 80:249–282Google Scholar
  22. Kumar P, Foufoula-Georgiou E (1994) Wavelet analysis in geophysics: an Introduction. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Academic Press, San Diego, pp 1–43Google Scholar
  23. Lykossov VN, Wamser C (1995) Turbulence intermittency in the atmospheric surface layer over snow-covered sites. Bound Lay Meteorol 72:393–409CrossRefGoogle Scholar
  24. Paw U KT, Brunet Y, Collineau S et al (1992) Evidence of turbulent coherent structures in and above agricultural plant canopies. Agric For Meteorol 61:55–68CrossRefGoogle Scholar
  25. Poggi D, Porporato A, Ridolfi L et al (2004) The effect of vegetation density on canopy sub-layer turbulence. Bound Lay Meteorol 111:565–587CrossRefGoogle Scholar
  26. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound Lay Meteorol 78:351–382CrossRefGoogle Scholar
  27. Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Bound Lay Meteorol: 39–63. doi:10.1007/s10546-005-9043-3Google Scholar
  28. Sayde C, Thomas CK, Wagner J, Selker JS (2015) High-resolution wind speed measurements using actively heated fiber optics. Geophys Res Lett 42:10,064–10,073. doi:10.1002/2015GL066729 CrossRefGoogle Scholar
  29. Scanlon TM, Albertson JD (2001) Turbulent transport of carbon dioxide and water vapor within a vegetation canopy during unstable conditions: identification of episodes using wavelet analysis. J Geophys Res D 106:7251–7262CrossRefGoogle Scholar
  30. Serafimovich A, Thomas CK, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound Lay Meteorol 140:429–451. doi:10.1007/s10546-011-9619-z CrossRefGoogle Scholar
  31. Shaw RH, Brunet Y, Finnigan JJ, Raupach MR (1995) A wind tunnel study of air flow in waving wheat: two-point velocity statistics. Bound Lay Meteorol 76:349–376CrossRefGoogle Scholar
  32. Shaw RH, Paw U KT, Gao W (1989) Detection of temperature ramps and flow structures at a deciduous forest site. Agric For Meteorol 47:123–138CrossRefGoogle Scholar
  33. Shaw RH, Tavangar J, Ward DP (1983) Structure of the reynolds stress in a canopy layer. J Clim Appl Meteorol 22:1922–1931CrossRefGoogle Scholar
  34. Siebicke L (2011) Advection at a forest site—an updated approach. PhD Thesis, University of Bayreuth, Bayreuth, 113 ppGoogle Scholar
  35. Siebicke L, Hunner M, Foken T (2012) Aspects of CO2-advection measurements. Theor Appl Climatol 109:109–131CrossRefGoogle Scholar
  36. Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agric For Meteorol 122:139–156. doi:10.1016/j.agrformet.2003.09.011 CrossRefGoogle Scholar
  37. Subke J-A, Buchmann N, Tenhunen JD (2004) Soil CO2 fluxes in spruce forests—temporal and spacial variation, and environmental controls. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing enivironment, a German case study. Ecological studies, vol 172. Springer, Berlin, pp 127–141CrossRefGoogle Scholar
  38. Thomas CK (2011) Variability of subcanopy flow, temperature, and horizontal advection in moderately complex terrain. Bound Lay Meteorol 139:61–81. doi:10.1007/s10546-010-9578-9 CrossRefGoogle Scholar
  39. Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80:91–104. doi:10.1007/s00704-004-0093-0 CrossRefGoogle Scholar
  40. Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound Lay Meteorol 123:317–337. doi:10.1007/s10546-006-9144-7 CrossRefGoogle Scholar
  41. Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound Lay Meteorol 122:123–147. doi:10.1007/s10546-006-9087-z CrossRefGoogle Scholar
  42. Thomas CK, Kennedy AM, Selker JS et al (2012) High-resolution fibre-optic temperature sensing: a new tool to study the two-dimensional structure of atmospheric surface layer flow. Bound Lay Meteorol 142:177–192. doi:10.1007/s10546-011-9672-7 CrossRefGoogle Scholar
  43. Thomas C, Martin JG, Goeckede M et al (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148:1210–1229. doi:10.1016/J.Agrformet.2008.03.002 CrossRefGoogle Scholar
  44. Thomas CK, Martin JG, Law BE, Davis K (2013) Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. Agric For Meteorol 173:14–27. doi:10.1016/j.agrformet.2013.01.001 CrossRefGoogle Scholar
  45. Thomas C, Mayer J-C, Meixner FX, Foken T (2006) Analysis of low-frequency turbulence above tall vegetation using a Doppler sodar. Bound Lay Meteorol 119:563–587. doi:10.1007/s10546-005-9038-0 CrossRefGoogle Scholar
  46. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  47. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound Lay Meteorol 99:127–150CrossRefGoogle Scholar
  48. Zeeman MJ, Eugster W, Thomas CK (2013) Concurrency of coherent structures and conditionally sampled daytime sub-canopy respiration. Bound Lay Meteorol 146:1–15. doi:10.1007/s10546-012-9745-2 CrossRefGoogle Scholar
  49. Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396. doi:10.1017/S002211209900467X CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christoph K. Thomas
    • 1
    • 2
  • Andrei Serafimovich
    • 3
  • Lukas Siebicke
    • 4
  • Tobias Gerken
    • 5
  • Thomas Foken
    • 2
    • 6
  1. 1.University of BayreuthBayreuthGermany
  2. 2.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  3. 3.Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZPotsdamGermany
  4. 4.Department of BioclimatologyGeorg-August University of GöttingenGöttingenGermany
  5. 5.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  6. 6.BischbergGermany

Personalised recommendations