Long-Term Carbon and Water Vapour Fluxes

  • Wolfgang Babel
  • Johannes Lüers
  • Jörg Hübner
  • Corinna Rebmann
  • Bodo Wichura
  • Christoph K. Thomas
  • Andrei Serafimovich
  • Thomas Foken
Part of the Ecological Studies book series (ECOLSTUD, volume 229)


In this study we analyse eddy-covariance flux measurements of carbon dioxide and water vapour from 18 years at Waldstein–Weidenbrunnen (DE-Bay), a Norway spruce forest site in the Fichtelgebirge, Germany. Standard flux partitioning algorithms have been applied for separation of net ecosystem exchange NEE into gross primary production GPP and ecosystem respiration Reco, as well as gap-filling. The site has always been a carbon sink, and annual net uptake ( − NEE) shows a positive trend with values around 40 g C m−2 a−1 for 1997–1999 up to 615 ± 79 g C m−2 a−1 for 2011–2014. This is related to a strong increase in GPP, while Reco is slightly enhanced. Evapotranspiration increases coherently with NEE, while atmospheric demand, that is, potential evaporation, shows inter-annual variability, but no trend. Comparisons with studies from other warm-temperate coniferous forests show that our NEE estimates are at the upper range of the distribution, but still realistic. Also evapotranspiration estimates, evaluated in the Budyko framework, are in a similar range but with a large inter-annual variability. We identified instrumental problems and variability from different flux partitioning algorithms as a large source of uncertainty, but with only minor influence on the trends found. Warming and rising CO2-concentrations are consistent with the observed trend, but cannot be disentangled from site-specific changes such as the recovery from “Waldsterben” after liming and an increase in heterogeneity after a wind-throw, which likely plays the most important role in the observed dynamics. As such transitions from an “ideal” to a disturbed or heterogeneous site are likely more-often the case at FLUXNET stations built 10–20 years ago, a systematic bias in regional studies can only be avoided by taking each single site history into account.


Ecosystem Respiration Carbon Uptake Sonic Anemometer Water Vapour Flux Energy Balance Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The operation of the site was funded by The Federal Ministry of Education, Science, Research and Technology (PT BEO-0339476 B, C, D), the European Community (EUROFLUX), the German Science Foundation (FO 226/16-1, FO 226/22-1) and the Oberfranken Foundation (contract 01879). This work was only possible with the enthusiasm and hard work, sometimes under harsh weather conditions, of so many technicians, students, PhD candidates and motivated scientists.


  1. Alsheimer M, Köstner B, Falge E, Tenhunen JD (1998) Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Ann Sci 55(1–2):103–123. doi:10.1051/forest:19980107CrossRefGoogle Scholar
  2. Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski A, Martin P, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. In: Advances in ecological research, vol 30. Academic, New York, pp 113–175.–2504(08)60018–5Google Scholar
  3. Aubinet M, Clement R, Elbers J, Foken T, Grelle A, Ibrom A, Moncrieff J, Pilegaard K, Rannik U, Rebmann C (2003) Methodology for data acquisition, storage, and treatment. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests. Ecological studies, chap 2, vol 163. Springer, Berlin, Heidelberg, pp 9–35. doi:10.1007/978-3-662-05171-9_2CrossRefGoogle Scholar
  4. Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Gorsel EV (2010) Direct advection measurements do not help to solve the night-time {CO2} closure problem: evidence from three different forests. Agric For Meteorol 150(5):655–664. doi:10.1016/j.agrformet.2010.01.016. Special issue on advection: {ADVEX} and other direct advection measurement campaignsGoogle Scholar
  5. Baldocchi D (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9(4):479–492. doi:10.1046/j.1365-2486.2003.00629.xCrossRefGoogle Scholar
  6. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434. doi:10.1175/1520-0477(2001)082¡2415:FANTTS¿2.3.CO;2CrossRefGoogle Scholar
  7. Bernhofer C, Aubinet M, Clement R, Grelle A, Grünwald T, Ibrom A, Jarvis PG, Rebmann C, Schulze ED, Tenhunen J (2003) Spruce forests (Norway and sitka spruce, including douglas fir): carbon and water fluxes and balances, eco-logical and ecophysiological determinants. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests, ecological studies, chap 6, vol 163. Springer, Berlin, Heidelberg, pp 99–123CrossRefGoogle Scholar
  8. Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the community land model version 4 (clm4) using global flux fields empirically inferred from fluxnet data. J Geophys Res 116(G2):G02,014. doi:10.1029/2010JG001593CrossRefGoogle Scholar
  9. Budyko M (1974) Climate and life. Academic, New YorkGoogle Scholar
  10. Charuchittipan D, Babel W, Mauder M, Leps JP, Foken T (2014) Extension of the averaging time in eddy-covariance measurements and its effect on the energy balance closure. Bound-Layer Meteorol 152(3):303–327. doi:10.1007/s10546-014-9922-6CrossRefGoogle Scholar
  11. Choudhury B (1999) Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J Hydrol 216(1–2):99–110. doi:10.1016/S0022-1694(98)00293-5CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107(1):43–69. doi:10.1016/S0168-1923(00)00225-2CrossRefGoogle Scholar
  13. Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin III FS, Ciais P, Malhi Y, Obersteiner M, Papale D, Piao SL, Reichstein M, Rodà F, Peñuelas J (2014) Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Chang 4(6):471–476. doi:10.1038/nclimate2177CrossRefGoogle Scholar
  14. Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18(6):1351–1367. CrossRefPubMedGoogle Scholar
  15. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2):83–105CrossRefGoogle Scholar
  16. Foken T, Göckede M, Mauder M, Mahrt L, Amiro B, Munger J (2004) Post-field data quality control. In: Lee X, Massman W, Law B (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208. doi:10.1007/1-4020-2265-4_9Google Scholar
  17. Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer atmospheric sciences. Springer, Netherlands, pp 85–131. doi:10.1007/978-94-007-2351-1_4CrossRefGoogle Scholar
  18. Göckede M, Rebmann C, Foken T (2002) Characterisation of a complex measuring site for flux measurements. Work Report University of Bayreuth, Department of Micrometeorology, ISSN 1614-8916, 20, 21pp. Google Scholar
  19. Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of a footprint-based approach for the characterisation of complex measurement sites. Bound-Layer Meteorol 118(3):635–655. doi:10.1007/s10546-005-6435-3CrossRefGoogle Scholar
  20. Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond JM, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers J, Eugster W, Fuhrer J, Granier A, Grunwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff J, Montagnani L, Moors E, Ourcival JM, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of carboeurope flux data – part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences 5(2):433–450. doi:10.5194/bg-5-433-2008CrossRefGoogle Scholar
  21. Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of fluxnet eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences 6(10):2001–2013. doi:10.5194/bg-6-2001-2009Google Scholar
  22. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499(7458):324–327. doi:10.1038/nature12291CrossRefPubMedGoogle Scholar
  23. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. doi:10.1127/0941-2948/2006/0130CrossRefGoogle Scholar
  24. Kutsch WL, Kolari P (2015) Data quality and the role of nutrients in forest carbon-use efficiency. Nat Clim Chang 5(11):959–960. doi:10.1038/nclimate2793CrossRefGoogle Scholar
  25. Lasslop G, Reichstein M, Detto M, Richardson AD, Baldocchi DD (2010) Comment on Vickers et al.: self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes. Agric For Meteorol 150(2):312–314. doi:10.1016/j.agrformet.2009.11.003CrossRefGoogle Scholar
  26. Lindauer M, Schmid H, Grote R, Mauder M, Steinbrecher R, Wolpert B (2014) Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest – measurements and simulations. Agric For Meteorol 197(0):219–234. doi:10.1016/j.agrformet.2014.07.005CrossRefGoogle Scholar
  27. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323. doi:10.2307/2389824CrossRefGoogle Scholar
  28. Lüers J, Westermann S, Piel K, Boike J (2014) Annual CO2 budget and seasonal CO2 exchange signals at a high arctic permafrost site on Spitsbergen, Svalbard archipelago. Biogeosciences 11(22):6307–6322. doi:10.5194/bg-11-6307-2014CrossRefGoogle Scholar
  29. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Chang Biol 13(12):2509–2537. doi:10.1111/j.1365-2486.2007.01439.xCrossRefGoogle Scholar
  30. Luyssaert S, Ciais P, Piao SL, Schulze ED, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, van der Werf GR, Janssens IA, Members of the Carboeurope-IP Synthesis Team (2010) The European carbon balance. part 3: forests. Glob Chang Biol 16(5):1429–1450. doi:10.1111/j.1365-2486.2009.02056.xGoogle Scholar
  31. Matteucci G, Dore S, Stivanello S, Rebmann C, Buchmann N (2000) Soil respiration in beech and spruce forests in Europe: trends, controlling factors, annual budgets and implications for the ecosystem carbon balance. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Springer, Berlin, Heidelberg, pp 217–236CrossRefGoogle Scholar
  32. Matzner E (ed) (2004) Biogeochemistry of forested catchments in a changing environment - a German case study. Ecological studies, vol 172. Springer, Berlin, Heidelberg. doi:10.1007/978-3-662-06073-5Google Scholar
  33. Mauder M, Foken T (2011) Documentation and instruction manual of the eddy-covariance software package TK3. Work Report University of Bayreuth, Department of Micrometeorology, ISSN 1614-8916, 46, 58pp. Google Scholar
  34. Mauder M, Foken T (2015) Documentation and instruction manual of the eddy-covariance software package TK3 (update). Work Report University of Bayreuth, Department of Micrometeorology, ISSN 1614-8916, 62, 64pp. Google Scholar
  35. Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem Z 49:333–369Google Scholar
  36. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92. doi:10.1175/1520-0493(1972)100¡0081:OTAOSH¿2.3.CO;2CrossRefGoogle Scholar
  37. Rebmann C (2004) Kohlendioxid-, Wasserdampf- und Energieaustausch eines Fichtenwaldes in Mittelgebirgslage in Nordostbayern. Bayreuther Forum Ökologie, 106, 140ppGoogle Scholar
  38. Rebmann C, Anthoni P, Falge E, Göckede M, Mangold A, Subke JA, Thomas C, Wichura B, Schulze ED, Tenhunen J, Foken T (2004) Carbon budget of a spruce forest ecosystem. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. Ecological studies, chap 8, vol 172. Springer, Berlin, Heidelberg, pp 143–159. doi:10.1007/978-3-662-06073-5_8CrossRefGoogle Scholar
  39. Rebmann C, Göckede M, Foken T, Aubinet M, Aurela M, Berbigier P, Bernhofer C, Buchmann N, Carrara A, Cescatti A, Ceulemans R, Clement R, Elbers JA, Granier A, Grunwald T, Guyon D, Havrankova K, Heinesch B, Knohl A, Laurila T, Longdoz B, Marcolla B, Markkanen T, Miglietta F, Moncrieff J, Montagnani L, Moors E, Nardino M, Ourcival JM, Rambal S, Rannik U, Rotenberg E, Sedlak P, Unterhuber G, Vesala T, Yakir D (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climatol 80(2–4):121–141CrossRefGoogle Scholar
  40. Ruppert J, Mauder M, Thomas C, Lüers J (2006) Innovative gap-filling strategy for annual sums of co2 net ecosystem exchange. Agric For Meteorol 138:5–18. doi:10.1016/j.agrformet.2006.03.003CrossRefGoogle Scholar
  41. Siebicke L (2008) Footprint synthesis for the FLUXNET site waldstein/weidenbrunnen (DE-Bay) during the EGER experiment. Work Report University of Bayreuth, Department of Micrometeorology, ISSN 1614-8916, 38, 45pp. Google Scholar
  42. Siebicke L, Hunner M, Foken T (2012) Aspects of co2 advection measurements. Theor Appl Climatol 109:109–131. doi:10.1007/s00704-011-0552-3CrossRefGoogle Scholar
  43. Subke JA, Tenhunen JD (2004) Direct measurements of CO2 flux below a spruce forest canopy. Agric For Meteorol 126(1–2):157–168. doi:
  44. Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. In: 15th conference on turbulence and boundary layers, Wageningen, NL, 15–19 July 2002. American Meteorological Society, Boston, MA, pp 129–132Google Scholar
  45. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Gu[eth]mundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404(6780):861–865. doi:10.1038/35009084Google Scholar
  46. Vickers D, Thomas CK, Martin JG, Law B (2009) Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes. Agric For Meteorol 149(9):1552–1555. doi:10.1016/j.agrformet.2009.03.009CrossRefGoogle Scholar
  47. Vickers D, Thomas CK, Martin JG, Law B (2010) Reply to the comment on Vickers et al. (2009) Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes. Agric For Meteorol 150(2):315–317. doi:10.1016/j.agrformet.2009.12.002Google Scholar
  48. Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150. doi:10.1023/A:1018966204465CrossRefGoogle Scholar
  49. Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, Wohlfahrt G, Hasler N, Bernhofer C, Foken T, Papale D, Schymanski S, Schaefer K (2012) Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour Res 48(6). doi:10.1029/2011WR011586Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wolfgang Babel
    • 1
    • 2
  • Johannes Lüers
    • 3
  • Jörg Hübner
    • 4
  • Corinna Rebmann
    • 5
  • Bodo Wichura
    • 6
  • Christoph K. Thomas
    • 1
    • 2
  • Andrei Serafimovich
    • 7
  • Thomas Foken
    • 2
    • 8
  1. 1.Micrometeorology GroupUniversity of BayreuthBayreuthGermany
  2. 2.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  3. 3.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  4. 4.Uhl Windkraft Projektierung GmbH & Co. KGEllwangenGermany
  5. 5.Computational Hydrosystems, Helmholtz Centre for Environmental Research UFZLeipzigGermany
  6. 6.Deutscher WetterdienstClimate and Environment Consultancy, Regional Office PotsdamPotsdamGermany
  7. 7.German Research Centre for Geosciences GFZHelmholtz Centre Potsdam, TelegrafenbergPotsdamGermany
  8. 8.BischbergGermany

Personalised recommendations