Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 41-72

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

Climate, Air Pollutants, and Wet Deposition

  • Johannes Lüers
  • Barbara Grasse
  • Thomas Wrzesinsky
  • Thomas Foken
Chapter

Abstract

One main topic of scientific and public interest regarding the Waldstein research site continues to be the high-quality observation of weather and air quality that captures the meteorology and climate of this particular site and the neighboring regions. Based on meteorological measurements made at the Waldstein facility from 1994 to the present, several studies—mainly of air temperature, precipitation, fog, wet deposition, and air pollutants—were conducted over the last 20 years. The expected strong global rise of earth’s basic air temperature will have a more moderated magnitude in Franconia, but the already continental location within the Central European climate zones, in combination with a heterogeneous landscape with imposed local orographic wind systems, will increase and reinforce diurnal and seasonal amplitudes and spatial variety of basic meteorological and air chemical elements and induce a higher risk of local extreme weather (climate) or smog (ozone) events. Forced by the change of macro- and mesoscale atmospheric circulation patterns across the northern hemisphere, the frequency and intensity of such weather-changing situations have increased during the last three or four decades in parallel with the span and the unpredictability of extreme weather conditions. That has, and will continue to have, an adjustment effect on air temperature and air humidity, sunshine duration and air pollution, wind (storm), date and duration of precipitation, and wet deposition of nitrogen, sulfur, salts, and metals and therefore a strong impact to the ecosystems at Waldstein.

References

  1. Belda M, Holtanová E, Halenka T, Kalvová J (2014) Climate classification revisited: from Köppen to Trewartha. Clim Res 59:1–13. doi:10.3354/cr01204 CrossRefGoogle Scholar
  2. Burkard R, Eugster W, Wrzesinsky T, Klemm O (2002) Vertical divergence of fogwater fluxes above a spruce forest. Atmos Res 64(1–4):133–145. doi:10.1016/S0169-8095(02)00086-8 CrossRefGoogle Scholar
  3. Eiden R, Förster J, Peters K, Trautner F, Herterich R, Gietl G (1989) Air pollution and deposition. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecological studies. Springer, Heidelberg, pp 57–103CrossRefGoogle Scholar
  4. Eigenbrodt (2007) Betriebs- und Wartungsanleitung Automatischer Niederschlagssammler NSA 181/KHS. Eigenbrodt GmbH & Co. KG, KönigsmoorGoogle Scholar
  5. Foken T (2003) Lufthygienisch-Bioklimatische Kennzeichnung des oberen Egertales. Bayreuther Forum Ökologie 100:69+XLVIIIGoogle Scholar
  6. Foken T, Lüers J (2003) Klimawandel in Oberfranken. Terra Nostra 6:129–135Google Scholar
  7. Foken T, Lüers J (2013) Regionale atmosphärische Prozesse und ihre raumzeitliche Ausprägung. Ann Meteorol 46:25–29Google Scholar
  8. Foken T, Lüers J (2015a) Abschlussbericht zum Förderprojekt 01879 Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge: 2007 bis 2014. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 61, ISSN 1614-8916, 97 ppGoogle Scholar
  9. Foken T, Lüers J (2015b) Regionale Ausprägung des Klimawandels in Oberfranken. In: Obermaier G (ed) Folgen des Klimawandels. Bayreuther Kontaktstudium Geographie, vol 8, pp 33–42Google Scholar
  10. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site—results of the EGER experiment. Atmos Chem Phys 12:1923–1950CrossRefGoogle Scholar
  11. Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (ed) Biogeochmistry of forested catchments in a changing environment, a German case study. Ecological studies, vol 172. Springer, Heidelberg, pp 15–41Google Scholar
  12. Hartmann H, Turowski P (2010) Feinstaubemisionen aus Holzheizungen. Bayerisches Landesamt für Wald- und Forstwirtschaft. LWF-aktuell 74:10–12Google Scholar
  13. Hendl M (1991) Globale Klimaklassifikation. In: Hupfer P (ed) Das Klimasystem der Erde. Akademie-Verlag, Berlin, pp 218–266Google Scholar
  14. Karlsson PE, Selldén G, Pleijel H (eds) (2003) Establishing ozone critical levels II. UNECE workshop report, IVL report B 1523. Gothenburg, IVL Swedish Environmental Research InstituteGoogle Scholar
  15. Karlsson PE, Uddling J, Braun S, Broadmeadow M, Elvira S, Gimeno BS, Le Thiec D, Oksanen E, Vandermeiren K, Wilkinson M, Emberson L (2004) New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos Environ 38:2283–2294CrossRefGoogle Scholar
  16. Kasana MS (1991) Sensitivity of three leguminous crops to O3 as influenced by different stages of growth and development. Environ Pollut 69:131–149CrossRefPubMedGoogle Scholar
  17. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, LondonGoogle Scholar
  18. Kittler F, Lüers J, Nauß T, Foken T (2011) Möglichkeiten der künstlichen Beschneiung im gegenwärtigen und zukünftigen Klima im Fichtelgebirge. Der Siebenstern 80(5):240–243Google Scholar
  19. Klemm O, Lange H (1999) Trends of air pollution in the Fichtelgebirge mountains, Bavaria. Environ Sci Pollut Res 6:193–199CrossRefGoogle Scholar
  20. Klemm O, Mangold A (2001) Ozone deposition at a forest site in NE Bavaria. Water Air Soil Pollut Focus 1:223–232CrossRefGoogle Scholar
  21. Klemm O, Mangold A, Held A (2004) Turbulent deposition of ozone to a mountainous forest ecosystem. In: Matzner E (ed) Biogeochmistry of forested catchments in a changing environment, a German case study. Ecological studies, vol 172. Springer, Heidelberg, pp 203–213Google Scholar
  22. Kottek M, Grieser J, Beck C, Rudof B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. doi:10.1127/0941-2948/2006/0130 CrossRefGoogle Scholar
  23. Lüers J (2012) Wasser in Oberfranken. Wie viel Wasser brauchen wir und wo wird es gewonnen? Spektrum, 1–2012, Universität Bayreuth, pp 26–31.Google Scholar
  24. Lüers J, Foken T (2010) Jahresbericht 2009 zum Förderprojekt 01879, Untersuchung der Veränderung der Konzentration von Luftbeimengungen und Treibhausgasen im hohen Fichtelgebirge. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 43, ISSN 1614–8916, 59 pp.Google Scholar
  25. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:163–171CrossRefGoogle Scholar
  26. Matschonat G, Vogt R (1998) Significance of the total cation concentration in acid forest soils for the solution composition and the saturation of exchange sites. Geoderma 84(4):289–307. doi:10.1016/S0016-7061(98)00009-3 CrossRefGoogle Scholar
  27. Mohammed NI, Ramli NA, Yahya AS, Ghazali NA, Ul-Saufie AZ (2011) Relationship between AOTX indices and crops response towards ozone concentration in Malaysia. Int J Appl Sci Technol 1(1):36–44Google Scholar
  28. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  29. Schönwiese CD (2013) Praktische Statistik für Meteorologen und Geowissenschaftler. 5. Aufl. ed. Borntraeger, Stuttgart, 319 SGoogle Scholar
  30. Staudt K, Foken T (2007) Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Universität Bayreuth, Abt. Mikrometeorologie, Arbeitsergebnisse 35, ISSN 1614–8916, 35 ppGoogle Scholar
  31. TA-Luft 2002 Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft) vom 24. Juli 2002, GMBl 2002 S. 511–605Google Scholar
  32. Thalmann E, Burkard R, Wrzesinsky T, Eugster W, Klemm O (2002) Ion fluxes from fog and rain to an agricultural and a forest ecosystem in Europe. Atmos Res 64(1–4):147–158. doi:10.1016/S0169-8095(02)00087-X CrossRefGoogle Scholar
  33. Trewartha GT, Horn LH (1980) Introduction to climate, 5th edn. McGraw Hill, New York, NYGoogle Scholar
  34. UBA U (ed) (1997) Daten zur Umwelt. Erich Schmidt Verlag, Berlin, 570 ppGoogle Scholar
  35. WMO (2008) Guide to meteorological instruments and methods of observation. World Meteorological Organization, WMO Note 8, CIMO-Guide 7th ednGoogle Scholar
  36. Wrzesinsky T, Klemm O (2000) Summertime fog chemistry at a mountainous site in Central Europe. Atmos Environ 34:1487–1496CrossRefGoogle Scholar
  37. Wrzesinsky T, Scheer C, Klemm O (2004) Fog deposition and its role in biogeochemical cycles of nutrients and pollutants. In: Matzner E (ed) Biogeochmistry of forested catchments in a changing environment, a German case study. Ecological studies, vol 172. Springer, Heidelberg, pp 191–202Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Johannes Lüers
    • 1
  • Barbara Grasse
    • 2
  • Thomas Wrzesinsky
    • 3
  • Thomas Foken
    • 1
    • 4
  1. 1.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  2. 2.AlsbachGermany
  3. 3.MeersburgGermany
  4. 4.BischbergGermany

Personalised recommendations