Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 461-475

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

What Can We Learn for a Better Understanding of the Turbulent Exchange Processes Occurring at FLUXNET Sites?

Chapter

Abstract

This chapter summarizes the results of all 18 chapters and has a special focus on flux measurements in a changing environment, linking atmospheric turbulence and air chemistry, an optimal data quality protocol, and recommendations for the future of FLUXNET sites. It was found that windthrow and black beetle pests are responsible for the development of a larger heterogeneity of the forest site over the nearly 20-year observing period, with the consequence of an increase in carbon uptake. This heterogeneity, and not only the footprint and target area, should be included in a site description; however, such a heterogeneity index has yet to be developed. The developed coupling schema is extremely useful for interpreting chemical flux measurements, and it should be used together with the Damköhler number to characterize chemical reactions in a turbulent atmosphere in and above a forest. Furthermore, the possibility of characterizing the coupling should be implemented in each forest flux measurement program.

References

  1. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  2. Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26CrossRefGoogle Scholar
  3. Christen A, van Gorsel E, Andretta M, Calanca M, Rotach M, Vogt R (2000) Intercomparison of ultrasonic anemometers during the MAP-Riviera project. In: 9th conference on mountain meteorology, Aspen, CO2000. AMS, pp 130–131Google Scholar
  4. Ciais P, Reichstein M, Viovy M, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlinstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Migglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefPubMedGoogle Scholar
  5. Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128CrossRefGoogle Scholar
  6. Eder F, Serafimovich A, Foken T (2013) Coherent structures at a forest edge: properties, coupling and impact of secondary circulations. Bound-Lay Meteorol 148:285–308CrossRefGoogle Scholar
  7. Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:687–424CrossRefGoogle Scholar
  8. Foken T (1979) Vorschlag eines verbesserten Energieaustauschmodells mit Berücksichtigung der molekularen Grenzschicht der Atmosphäre. Z Meteorol 29:32–39Google Scholar
  9. Foken T (1984) The parametrisation of the energy exchange across the air-sea interface. Dynam Atmos Ocean 8:297–305CrossRefGoogle Scholar
  10. Foken T (2008) The energy balance closure problem – an overview. Ecol Appl 18:1351–1367CrossRefPubMedGoogle Scholar
  11. Foken T, Babel W (2016) Are trend analyses from FLUXNET station data realistic? Paper presented at 22nd symposium on boundary layers and turbulence, Salt Lake City, June 20–24, 2016. https://ams.confex.com/ams/32AgF22BLT3BG/webprogram/Paper294622.html
  12. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  13. Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 Experiment. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. 48:75 ppGoogle Scholar
  14. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208Google Scholar
  15. Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012a) Corrections and data quality. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131CrossRefGoogle Scholar
  16. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012b) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950CrossRefGoogle Scholar
  17. Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric For Meteorol 127:175–188CrossRefGoogle Scholar
  18. Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond J-M, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers JA, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff JB, Montagnani L, Moors E, Ourcival J-M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of CarboEurope flux data – part 1: coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences 5:433–450CrossRefGoogle Scholar
  19. Haslwanter A, Hammerle A, Wohlfahrt G (2009) Open-path vs. closed-path eddy covariance measurements of the net ecosystem carbon dioxide and water vapour exchange: a long-term perspective. Agric For Meteorol 149:291–302CrossRefPubMedPubMedCentralGoogle Scholar
  20. Held A, Hinz K-P, Trimborn A, Spengler B, Klemm O (2003) Towards direct measurement of turbulent vertical fluxes of compounds in atmospheric aerosol particles. Geophys Res Lett 30:8/1–8/4CrossRefGoogle Scholar
  21. Herbst M, Mund M, Tamrakar R, Knohl A (2015) Differences in carbon uptake and water use between a managed and an unmanaged beech forest in central Germany. For Ecol Manage 355:101–108CrossRefGoogle Scholar
  22. Högström U, Smedman A (2004) Accuracy of sonic anemometers: Laminar wind-tunnel calibrations compared to atmospheric in situ calibrations against a reference instrument. Bound-Lay Meteorol 111:33–54CrossRefGoogle Scholar
  23. Hollinger DY, Richardson AD (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Phys 25:873–885CrossRefGoogle Scholar
  24. Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in urban complex environment. Boreal Environ Res 14:499–514Google Scholar
  25. Jocher G, Ottosson Löfvenius M, De Simon G, Hörnlund T, Linder S, Lundmark T, Marshall J, Nilsson MB, Näsholm T, Tarvainen L, Öquist M, Peichl M (2017) Apparent winter CO2 uptake by a boreal forest due to decoupling. Agric For Meteorol 232:23–34CrossRefGoogle Scholar
  26. Kanani-Sühring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: a large-eddy simulation study. Bound-Lay Meteorol 155:1–27CrossRefGoogle Scholar
  27. Karipot A, Leclerc MY, Zhang G, Martin T, Starr D, Hollinger D, McCaughey H, Hendrey GM (2006) Nocturnal CO2 exchange over tall forest canopy associated with intermittent low-level jet activity. Theor Appl Climatol 85:243–248CrossRefGoogle Scholar
  28. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–327CrossRefPubMedGoogle Scholar
  29. Klemm O, Mangold A, Held A (2004) Turbulent deposition of ozone to a mountainous forest ecosystem. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing enivironment, a German case study, Ecological studies, vol 172. Springer, Berlin, pp 203–213CrossRefGoogle Scholar
  30. Klemm O, Held A, Forkel R, Gasche R, Kanter H-J, Rappenglück B, Steinbrecher R, Müller K, Plewka A, Cojocariu C, Kreuzwieser J, Valverde-Canossa J, Schuster G, Moortgat GK, Graus M, Hansel A (2006) Experiments on forest/atmosphere exchange: climatology and fluxes during two summer campaigns in NE Bavaria. Atmos Environ 40(1):3–20CrossRefGoogle Scholar
  31. Kutsch WL, Kolari P (2015) Data quality and the role of nutrients in forest carbon-use efficiency. Nat Clim Chang 5:959–960CrossRefGoogle Scholar
  32. Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology. Springer, Heidelberg, XIX, 239 ppCrossRefGoogle Scholar
  33. LfU (2015) 25 Jahre Versauerungsmonitoring in Bayern. Bayerisches Landesamt für Umwelt, München, 90 ppGoogle Scholar
  34. Matzner E (ed) (2004) Biogeochemistry of forested catchments in a changing environment, a German case study. Springer, Berlin, 498 ppGoogle Scholar
  35. Matzner E, Zuber T, Lischeid G (2004) Response of soil solution chemistry and solute fluxes to changig deposition rates. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment, a German case study, Ecological studies, vol 172. Springer, Berlin, pp 339–260CrossRefGoogle Scholar
  36. Mauder M, Liebethal C, Göckede M, Leps J-P, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Bound-Lay Meteorol 121:67–88CrossRefGoogle Scholar
  37. Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data - part 2: inter-comparison of eddy-covariance software. Biogeosciences 5:451–462CrossRefGoogle Scholar
  38. Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135CrossRefGoogle Scholar
  39. Ocheltree TW, Loescher HW (2007) Design of the AmeriFlux portable eddy covariance system and uncertainty analysis of carbon measurements. J Atmos Ocean Technol 24:1389–1406CrossRefGoogle Scholar
  40. Papale D (2012) Data gap filling. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 159–172CrossRefGoogle Scholar
  41. Rebmann C (2003) Kohlendioxid-, Wasserdampf- und Energieaustausch eines Fichtenwaldes in Mittelgebirgslage. Dissertation, Universität Bayreuth, Bayreuth, 149 ppGoogle Scholar
  42. Richardson AD, Aubinet M, Barr AG, Hollinger DY, Ibrom A, Lasslop G, Reichstein M (2012) Uncertainty quantification. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Berlin, pp 173–209CrossRefGoogle Scholar
  43. Riederer M, Hübner J, Ruppert J, Brand WA, Foken T (2014) Prerequisites for application of hyperbolic relaxed eddy accumulation on managed grasslands and alternative net ecosystem exchange flux partitioning. Athmos Meas Tech 7:4237–4250CrossRefGoogle Scholar
  44. Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Bound-Lay Meteorol 120:39–63CrossRefGoogle Scholar
  45. Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound-Lay Meteorol 154:27–56CrossRefGoogle Scholar
  46. Schulze E-D, Lange OL, Oren R (eds) (1989) Forest decline and air pollution. Springer, Berlin, XVIII, 475 ppGoogle Scholar
  47. Serafimovich A, Thomas C, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Lay Meteorol 140:429–451CrossRefGoogle Scholar
  48. Sörgel M, Trebs I, Serafimovich A, Moravek A, Held A, Zetzsch C (2011) Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos Chem Phys 11:841–855CrossRefGoogle Scholar
  49. Steinbrecher R, Rappenglück B, Hansel A, Graus M, Klemm O, Held A, Wiedensohler A, Nowak A (2004) Vegetation-atmospheric interactions: the emissions of biogenic volatile organic compounds (BVOC) and their relevance to atmospheric particle dynamics. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing enivironment, a German case study, Ecological studies, vol 172. Springer, Berlin, pp 215–235CrossRefGoogle Scholar
  50. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Serrano-Ortiz P, Sottocornola M, Saunders M, Spano D, Vaccari F, Varlagin A (2012) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape-scale heterogeneity. Agric For Meteorol 171–172:137–152Google Scholar
  51. Tenhunen JD, Lenz R, Hantschel R (eds) (2001) Ecosystem approaches to landscape management in Central Europe, ecological studies, vol 147. Springer, Berlin, 652 ppGoogle Scholar
  52. Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Lay Meteorol 123:317–337CrossRefGoogle Scholar
  53. Thomas CK, Martin JG, Law BE, Davis K (2013) Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon. Agric For Meteorol 173:14–27CrossRefGoogle Scholar
  54. Tsokankunku A (2014) Fluxes of the NO-O3-NO2 triad above a spruce forest canopy in south-eastern Germany. PhD Thesis, University of Bayreuth, Bayreuth, 184 ppGoogle Scholar
  55. Valentini R (ed) (2003) Fluxes of carbon, water and energy of European forests, Ecological studies, vol 163. Springer, Berlin, 270 ppGoogle Scholar
  56. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526CrossRefGoogle Scholar
  57. Wieser A, Fiedler F, Corsmeier U (2001) The influence of the sensor design on wind measurements with sonic anemometer systems. J Atmos Ocean Technol 18:1585–1608CrossRefGoogle Scholar
  58. Wild M, Roesch M, Ammann C (2012) Global dimming and brightening – evidence and agricultural implications. CAP Rev 7(003):1–17Google Scholar
  59. Williams CA, Reichstein M, Buchmann N, Baldocchi DD, Beer C, Schwalm C, Wohlfahrt G, Hasler N, Bernhofer C, Foken T, Papale D, Schymanski S, Schaefer K (2012) Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour Res 48:W06523CrossRefGoogle Scholar
  60. Zhu Z, Tsokankunku A, Plake D, Falge E, Foken T, Meixner FX (2009) Multi-level eddy covariance measurements for ozone fluxes above, within and below spruce forest canopy. In: Lüers J, Foken T (eds) Proceedings of the international conference of atmospheric transport and chemistry in forest ecosystems. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol, No. 40, Bayreuth, p 32. ISSN 1614-8916Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.BischbergGermany
  2. 2.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany

Personalised recommendations