Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 331-353

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

Forest Climate in Vertical and Horizontal Scales

  • Jörg Hübner
  • Lukas Siebicke
  • Johannes Lüers
  • Thomas Foken
Chapter

Abstract

Microclimate was investigated within a heterogeneous spruce forest in Northern Bavaria, Germany, at the Waldstein–Weidenbrunnen site, especially during the EGER project in 2007, 2008 and 2011. Besides standard tower measurements, two innovative measuring techniques were used to investigate horizontal and vertical gradients. A particular focus was paid to advection within the homogeneous part and its effect on NEE, as well as gradients near a forest edge, measured by a mobile measuring system.

The forest canopy shields the below-canopy trunk space and therefore huge gradients are prevalent. However, vertical exchange is PAI-dependent and thus small gaps in the canopy (‘sunny spots’) can facilitate vertical exchange by coherent structures and alter the CO2 concentration within the trunk space. The coupling of different canopy layers also plays an important role in altering trunk space conditions. Decoupling leads to an enrichment of CO2 close to the ground with large katabatic drainage, and coupling leads to depletion. Furthermore, the investigations showed that horizontal and vertical advection contributes significantly to the net ecosystem exchange at the Waldstein–Weidenbrunnen site, especially during nighttime and transition periods.

The investigations in 2011 showed that clearings, with their forest edges, play a key role in vertical exchange in heterogeneous forests. Roughness changes and thermal differences between forests and clearings facilitate downdrafts (during night) and updrafts (during day). This leads to the highest variations in turbulent influenced quantities, like temperature, humidity and trace gas concentrations directly at the forest edge, for example. Additionally, the formation of a secondary circulation system is possible above the clearing during midday, with effects on horizontal gradients.

References

  1. Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17:589–602CrossRefGoogle Scholar
  2. Aubinet M (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem. Ecol Appl 18:1368–1378CrossRefPubMedGoogle Scholar
  3. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound-Layer Meteorol 108(3):397–417. doi:10.1023/A:1024168428135 CrossRefGoogle Scholar
  4. Aussenac G (2000) Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301. doi:10.1051/forest:2000119 CrossRefGoogle Scholar
  5. Baker TP, Jordan GJ, Steel EA, Fountain-Jones NM, Wardlaw TJ, Baker SC (2014) Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. Forest Ecol Manag 334:174–184. doi:10.1016/j.foreco.2014.09.008 CrossRefGoogle Scholar
  6. Baldocchi D, Finnigan JF, Wilson K, Paw U KT, Falge E (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Bound-Layer Meteorol 96(1–2):257–291. doi:10.1023/A:1002497616547 CrossRefGoogle Scholar
  7. Baumgartner A (1956) Untersuchungen über den Wärme- und Wasserhaushalt eines jungen Waldes. Berichte des Deutschen Wetterdienstes 5, Nr. 28Google Scholar
  8. Bonan GB (2008) Ecological climatology: concepts and applications, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Breshears DD, Rich PM, Barnes FJ, Campbell K (1997) Overstory-imposed heterogeneity in solar radiation and soil moisture in a semiarid woodland. Ecol Appl 7(4):1201–1215. doi:10.1890/1051-0761(1997)007[1201:OIHISR]2.0.CO;2 CrossRefGoogle Scholar
  10. Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63(3–4):219–237. doi:10.1016/0168-1923(93)90061-L CrossRefGoogle Scholar
  11. Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-Fir forests. Ecol Appl 5(1):74–86. doi:10.2307/1942053 CrossRefGoogle Scholar
  12. Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske K, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. BioScience 49(4):288–297. doi:10.2307/1313612 CrossRefGoogle Scholar
  13. Closa I, Irigoyen JJ, Goicoechea N (2010) Microclimatic conditions determined by stem density influence leaf anatomy and leaf physiology of beech (Fagus sylvatica L.) growing within stands that naturally regenerate from clear-cutting. Trees 24(6):1029–1043. doi:10.1007/s00468-010-0472-3 CrossRefGoogle Scholar
  14. Davies-Colley RJ, Payne GW, van Elswijk M (2000) Microclimate gradients across a forest edge. New Zeal J Ecol 24(2):111–121Google Scholar
  15. Dlugi R (1993) Interaction of NOx and VOC’s within vegetation. In: Borrell PW (ed) Proceedings EUROTRAC symposium ’92, SPB, Academic Publication, The Hague, pp 682–688Google Scholar
  16. Eder F, Serafimovich A, Foken T (2013) Coherent structures at a forest edge: properties, coupling and impact of secondary circulations. Bound-Layer Meteorol 148(2):285–308. doi:10.1007/s10546-013-9815-0 CrossRefGoogle Scholar
  17. Feigenwinter C, Bernhofer C, Eichelmann U, Heinesch B, Hertel M, Janous D, Kolle O, Lagergren F, Lindroth A, Minerbi S, Moderow U, Molder M, Montagnani L, Queck R, Rebmann C, Vestin P, Yernaux M, Zeri M, Ziegler W, Aubinet M (2008) Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agr For Meteorol 148(1):12–24. doi:10.1016/j.agrformet.2007.08.013 CrossRefGoogle Scholar
  18. Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z 4:91–118Google Scholar
  19. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12(4):1923–1950. doi:10.5194/acp-12-1923-2012 CrossRefGoogle Scholar
  20. Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield, Lanham, MDGoogle Scholar
  21. Hübner J, Olesch J, Falke H, Meixner FX, Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Tech 7(9):2967–2980. doi:10.5194/amt-7-2967-2014 CrossRefGoogle Scholar
  22. Hutchison BA, Hicks BB (eds) (1985) The forest-atmosphere interaction. In: Proceedings of the forest environmental measurements conference held at Oak Ridge, Tennessee, Oct 23–28, 1983, D. Reidel Publishing Company, DordrechtGoogle Scholar
  23. Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72(3–4):231–243. doi:10.1007/s00704-002-0682-8 CrossRefGoogle Scholar
  24. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agr For Meteorol 91(1–2):39–49. doi:10.1016/S0168-1923(98)00071-9 CrossRefGoogle Scholar
  25. Ma S, Concilio A, Oakley B, North M, Chen J (2010) Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. Forest Ecol Manag 259(5):904–915. doi:10.1016/j.foreco.2009.11.030 CrossRefGoogle Scholar
  26. Mahrt L, Sun J, Vickers D, MacPherson JI, Pederson JR, Desjardins RL (1994) Observations of fluxes and Inland breezes over a heterogeneous surface. J Atmos Sci 51(17):2484–2499. doi:10.1175/1520-0469(1994)051<2484:OOFAIB>2.0.CO;2
  27. Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66(3):185–194. doi:10.1016/0006-3207(93)90004-K CrossRefGoogle Scholar
  28. Matlack GR, Litvaitis JA (1999) Forest edges. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems, Cambridge University Press, Cambridge, pp 210–233CrossRefGoogle Scholar
  29. Molemaker MJ, Vilà -Guerau de Arellano J (1998) Control of chemical reactions by convective turbulence in the boundary layer. J Atmos Sci 55(4):568–579. doi:10.1175/1520-0469(1998)055<0568:COCRBC>2.0.CO;2
  30. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62. doi:10.1016/S0169-5347(00)88977-6 CrossRefPubMedGoogle Scholar
  31. Oke TR (1987) Boundary layer climates. Routledge Chapman & Hall, LondonGoogle Scholar
  32. Paw U KT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction Of Eddy-covariance measurements incorporating both advective effects and density fluxes. Bound-Layer Meteorol 97(3):487–511. doi:10.1023/A:1002786702909 CrossRefGoogle Scholar
  33. Scharenbroch BC, Bockheim JG (2007) Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294(1–2):219–233. doi:10.1007/s11104-007-9248-y CrossRefGoogle Scholar
  34. Serafimovich A, Siebicke L, Staudt K, Lüers J, Biermann T, Schier S, Mayer JC (2008a) ExchanGE processes in mountainous Regions (EGER) - Documentation of the intensive observation period (IOP1) Sept, 6th to Oct, 7th 2007. Arbeitsergebn, University of Bayreuth, Abt Mikrometeorol. ISSN 1614-8916 36:147Google Scholar
  35. Serafimovich A, Siebicke L, Staudt K, Lüers J, Biermann T, Schier S, Mayer JC (2008b) ExchanGE processes in mountainous Regions (EGER) - documentation of the intensive observation period (IOP2) June, 1st to July, 15th 2008. Arbeitsergebn, University of Bayreuth, Abt Mikrometeorol. ISSN 1614-8916 37:180Google Scholar
  36. Serafimovich A, Eder F, Hübner J, Falge E, VoSS, Sörgel M, Held A, Liu Q, Eigenmann R, Huber K, Duarte HF, Werle P, Gast E, Cieslik S, Heping L, Foken T (2011a) ExchanGE processes in mountainous regions (EGER): documentation of the intensive observation period (IOP3) June, 13th to July, 26th 2011. Arbeitsergebn, University of Bayreuth, Abt Mikrometeorol. ISSN 1614-8916 47:137Google Scholar
  37. Serafimovich A, Thomas C, Foken T (2011b) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Layer Meteorol 140:429–451. doi:10.1007/s10546-011-9619-z CrossRefGoogle Scholar
  38. Siebicke L (2008) Footprint synthesis for the FLUXNET site Waldstein/Weidenbrunnen (DE-Bay) during the EGER experiment. Arbeitsergebn, University of Bayreuth, Abt Mikrometeorol, ISSN 1614-8916 38:49Google Scholar
  39. Siebicke L (2010) Advection at a forest side - an updated approach. PhD thesis, University of Bayreuth, BayreuthGoogle Scholar
  40. Siebicke L, Hunner M, Foken T (2011a) Aspects of CO2 advection measurements. Theor Appl Climatol 109(1–2):109–131. doi:10.1007/s00704-011-0552-3 Google Scholar
  41. Siebicke L, Steinfeld G, Foken T (2011b) CO2-gradient measurements using a parallel multi-analyzer setup. Atmos Meas Tech 4(3):409–423. doi:10.5194/amt-4-409-2011 CrossRefGoogle Scholar
  42. Sörgel M, Trebs I, Serafimovich A, Moravek A, Held A, Zetzsch C (2011) Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmos Chem Phys 11(2):841–855. doi:10.5194/acp-11-841-2011 CrossRefGoogle Scholar
  43. Thomas CK (2011) Variability of Sub-Canopy flow, temperature, and horizontal advection in moderately complex terrain. Bound-Layer Meteorol 139(1):61–81. doi:10.1007/s10546-010-9578-9 CrossRefGoogle Scholar
  44. Thomas C, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Layer Meteorol 123(2):317–337. doi:10.1007/s10546-006-9144-7 CrossRefGoogle Scholar
  45. Vanwalleghem T, Meentemeyer RK (2009) Predicting forest microclimate in heterogeneous landscapes. Ecosystems 12(7):1158–1172. doi:10.1007/s10021-009-9281-1 CrossRefGoogle Scholar
  46. von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agr For Meteorol 166–167:144–155. doi:10.1016/j.agrformet.2012.07.018 CrossRefGoogle Scholar
  47. von Arx G, Graf Pannatier E, Thimonier A, Rebetez M (2013) Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol 101(5):1201–1213. doi:10.1111/1365-2745.12121 CrossRefGoogle Scholar
  48. Weaver CP, Avissar R (2001) Atmospheric disturbances caused by human modification of the landscape. Bull Am Meteorol Soc 82(2):269–281. doi:10.1175/1520-0477(2001)082<0269:ADCBHM>2.3.CO;2
  49. Whittaker RH (1975) Communities and ecosystems. MacMillan, New York 2nd Revised edn.Google Scholar
  50. Wicklein HF, Christopher D, Carter ME, Smith BH (2012) Edge effects on sapling characteristics and microclimate in a small temperate deciduous forest fragment. Nat Areas J 32(1):110–116. doi:10.3375/043.032.0113 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jörg Hübner
    • 1
  • Lukas Siebicke
    • 2
  • Johannes Lüers
    • 3
  • Thomas Foken
    • 4
    • 5
  1. 1.Uhl Windkraft Projektierung GmbH & Co. KGEllwangenGermany
  2. 2.Faculty of Forest Sciences and Forest Ecology - BioclimatologyUniversity of GöttingenGöttingenGermany
  3. 3.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  4. 4.BischbergGermany
  5. 5.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany

Personalised recommendations