Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 309-329

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

Interaction Forest–Clearing

  • Thomas Foken
  • Andrei Serafimovich
  • Fabian Eder
  • Jörg Hübner
  • Zhongming Gao
  • Heping Liu
Chapter

Abstract

In 2011, a special experiment was conducted to investigate turbulent structures at the edge between the Waldstein–Weidenbrunnen forest site and the Köhlerloh clearing. A horizontal moving measuring system was used to detect significant gradients of the radiation fluxes, temperature, moisture, ozone, and carbon dioxide concentrations for different situations at day and night. In agreement with other studies, an increase of the turbulent fluxes and ejections at the forest edge could be found. This means that the energy balance closure was also better than that obtained directly at the Weidenbrunnen site. The vertical coupling by coherent structures was often—mainly at daytime—very good. In contrast, the horizontal coupling between the forest and the clearing at the edge was, in most cases, not apparent. For wind directions coming from the forest, the coherent structures did not touch down at the surface of the clearing. These investigations were made with a wavelet tool. A clear indication of secondary circulations between the forest and the clearing was not possible.

References

  1. Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound-Lay Meteorol 108:397–417CrossRefGoogle Scholar
  2. Belcher SE, Finnigan JJ, Harman IN (2008) Flows through forest canopies in complex terrain. Ecol Appl 18:1436–1453CrossRefPubMedGoogle Scholar
  3. Brock FV, Richardson SJ (2001) Meteorological measurement systems. Oxford University Press, New York, 290 ppGoogle Scholar
  4. Collineau S, Brunet Y (1993a) Detection of turbulent coherent motions in a forest canopy. Part I: Wavelet analysis. Bound-Lay Meteorol 65:357–379Google Scholar
  5. Collineau S, Brunet Y (1993b) Detection of turbulent coherent motions in a forest canopy. Part II: Time-scales and conditional averages. Bound-Lay Meteorol 66:49–73CrossRefGoogle Scholar
  6. Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128CrossRefGoogle Scholar
  7. Dupont S, Irvine M, Bonnefond J-M, Lamaud E, Brunet Y (2012) Turbulent structures in a pine forest with a deep and sparse trunk space: stand and edge regions. Bound-Lay Meteorol 143:309–336CrossRefGoogle Scholar
  8. Eder F, Serafimovich A, Foken T (2013) Coherent structures at a forest edge: properties, coupling and impact of secondary circulations. Bound-Lay Meteorol 148:285–308CrossRefGoogle Scholar
  9. Eder F, De Roo F, Rotenberg E, Yakir D, Schmid HP, Mauder M (2015) Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements. Agric For Meteorol 211–212:115–127CrossRefGoogle Scholar
  10. Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600CrossRefGoogle Scholar
  11. Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81:219–230CrossRefGoogle Scholar
  12. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571CrossRefGoogle Scholar
  13. Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above a vegetation canopy. J Fluid Mech 637:687–424CrossRefGoogle Scholar
  14. Foken T (2008) The energy balance closure problem – an overview. Ecolog Appl 18:1351–1367CrossRefGoogle Scholar
  15. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012a) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950CrossRefGoogle Scholar
  16. Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012b) Corrections and data quality. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131CrossRefGoogle Scholar
  17. Gao W, Shaw RH, Paw U KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Bound-Lay Meteorol 47:349–377CrossRefGoogle Scholar
  18. Gao Z, Liu H, Russell ES, Huang J, Foken T, Oncley SP (2016) Large eddies modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer. J Geophys Res: Atmos 121:1475–1492Google Scholar
  19. Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond J-M, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers JA, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff JB, Montagnani L, Moors E, Ourcival J-M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of CarboEurope flux data – part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosci 5:433–450CrossRefGoogle Scholar
  20. Hübner J, Olesch J, Falke H, Meixner FX, Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Tech 7:2967–2980CrossRefGoogle Scholar
  21. Kanani-Sühring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: A Large-Eddy Simulation study. Bound-Lay Meteorol 155:1–27CrossRefGoogle Scholar
  22. Klaassen W, Sogatchev A (2006) Flux footprint simulation downwind of a forest edge. Bound-Lay Meteorol 121:459–473CrossRefGoogle Scholar
  23. Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:231–243CrossRefGoogle Scholar
  24. Knohl A, Kolle O, Minayeva TY, Milyukova IM, Vygodskaya NN, Foken T, Schulze ED (2002) Carbon dioxide exchange of a Russian boreal forest after disturbance by wind throw. Glob Chang Biol 8:1–16CrossRefGoogle Scholar
  25. Mauder M and Foken T (2004) Documentation and instruction manual of the eddy covariance software package TK2. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol 26:42 pp. ISSN 1614-8916Google Scholar
  26. Mauder M and Foken T (2015) Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update). Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol 62:64. ISSN 1614-8916Google Scholar
  27. Morse AP, Gardiner BA, Marshall BJ (2002) Mechanisms controlling turbulence development across a forest edge. Bound-Lay Meteorol 103:227–251CrossRefGoogle Scholar
  28. Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61:55–68CrossRefGoogle Scholar
  29. Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 59–83CrossRefGoogle Scholar
  30. Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound-Lay Meteorol 154:27–56CrossRefGoogle Scholar
  31. Serafimovich A, Thomas C, Foken T (2011a) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Lay Meteorol 140:429–451CrossRefGoogle Scholar
  32. Serafimovich A, Eder F, Hübner J, Falge E, Voß L, Sörgel M, Held A, Liu Q, Eigenmann R, Huber K, Duarte HF, Werle P, Gast E, Cieslik S, Liu H and Foken T (2011b) ExchanGE processes in mountainous regions (EGER)- documentation of the intensive observation period (IOP3) June, 13th to July, 26th 2011. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol 47:135. ISSN 1614-8916Google Scholar
  33. Shen S, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87:3–25CrossRefGoogle Scholar
  34. Sogachev A, Leclerc MJ, Karipot A, Zhang G, Vesala T (2005) Effect of clearcuts on footprints and flux measurements above a forest canopy. Agric For Meteorol 133:182–196CrossRefGoogle Scholar
  35. Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest. Theor Appl Climatol 80:91–104CrossRefGoogle Scholar
  36. Thomas C, Foken T (2007a) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound-Lay Meteorol 122:123–147CrossRefGoogle Scholar
  37. Thomas C, Foken T (2007b) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Lay Meteorol 123:317–337CrossRefGoogle Scholar
  38. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  39. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526CrossRefGoogle Scholar
  40. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Lay Meteorol 99:127–150CrossRefGoogle Scholar
  41. Zhang G, Thomas C, Leclerc MY, Karipot A, Gholz HL, Foken T (2007) On the effect of clearcuts on turbulence structure above a forest canopy. Theor Appl Climatol 88:133–137CrossRefGoogle Scholar
  42. Zhang Y, Liu H, Foken T, Williams QL, Liu S, Mauder M, Liebethal C (2010) Turbulence spectra and cospectra under the influence of large eddies in the energy balance experiment (EBEX). Bound-Lay Meteorol 136:235–251CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Foken
    • 1
    • 2
  • Andrei Serafimovich
    • 3
  • Fabian Eder
    • 4
  • Jörg Hübner
    • 5
  • Zhongming Gao
    • 6
  • Heping Liu
    • 6
  1. 1.BischbergGermany
  2. 2.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  3. 3.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  4. 4.Alexander Thamm GmbHMünchenGermany
  5. 5.Uhl Windkraft Projektierung GmbH & Co. KGEllwangenGermany
  6. 6.Department of Civil & Environmental EngineeringWashington State UniversityPullmanUSA

Personalised recommendations