Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 277-308

Part of the Ecological Studies book series (ECOLSTUD, volume 229)

| Cite as

Development of Flux Data Quality Tools

  • Thomas Foken
  • Mathias Göckede
  • Johannes Lüers
  • Lukas Siebicke
  • Corinna Rebmann
  • Johannes Ruppert
  • Christoph K. Thomas
Chapter

Abstract

At the Waldstein-Weidenbrunnen site, several techniques for data quality control were developed and tested and later on applied at European FLUXNET sites. The history of this development and the specific results for the site form the subject of this chapter. These data quality criteria include integral turbulence characteristics, which are dependent on heterogeneities in the footprint area and inside the canopy. Furthermore, footprint models were applied to determine the footprint climatology and to link these models with the data quality of eddy covariance data. This tool was also applied to find the optimal period for the application of the planar-fit rotation method. The energy balance closure was found to be about 80 % in all periods. These findings were summarized as a schema for data quality control and characterization of FLUXNET sites.

References

  1. Acevedo OC, Moraes OLL, Degrazia GA, Fitzjarrald DR, Manzi AO, Campos JG (2009) Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agric Forest Meteorol 149:1–10CrossRefGoogle Scholar
  2. Amiro BD (1998) Footprint climatologies for evapotranspiration in a boreal catchment. Agric Forest Meteorol 90:195–201CrossRefGoogle Scholar
  3. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  4. Aubinet M, Clement R, Elbers J, Foken T, Grelle A, Ibrom A, Moncrieff H, Pilegaard K, Rannik U, Rebmann C (2003) Methodology for data acquisition, storage and treatment. In: Valentini R (ed) Fluxes of carbon, water and energy of European forests, Ecological studies, vol 163. Springer, Berlin, pp 9–35CrossRefGoogle Scholar
  5. Baldocchi D, Meyers T (1998) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation. Agric Forest Meteorol 90:1–25CrossRefGoogle Scholar
  6. Blackadar AK (1997) Turbulence and diffusion in the atmosphere. Springer, Berlin/Heidelberg, 185 ppCrossRefGoogle Scholar
  7. Cellier P, Brunet Y (1992) Flux-gradient relationships above tall plant canopies. Agric Forest Meteorol 58:93–117CrossRefGoogle Scholar
  8. Charuchittipan D, Babel W, Mauder M, Leps J-P and Foken T (2014) Extension of the averaging time of the eddy-covariance measurement and its effect on the energy balance closure. Bound-Layer Meteorol 152:303–327CrossRefGoogle Scholar
  9. Claussen M (1990) Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmos Environ Part A 24:1349–1360CrossRefGoogle Scholar
  10. DeBruin HAR, Bink NJ, Kroon LJ (1991) Fluxes in the surface layer under advective conditions. In: Schmugge TJ, André JC (eds) Workshop on land surface evaporation, measurement and parameterization. Springer, New York, NY, pp 157–169CrossRefGoogle Scholar
  11. Eigenmann R, Metzger S, Foken T (2009) Generation of free convection due to changes of the local circulation system. Atmos Chem Phys 9:8587–8600CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for long term energy flux data sets. Agric Forest Meteorol 107:71–77CrossRefGoogle Scholar
  13. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571CrossRefGoogle Scholar
  14. Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, Part I: Averaging and coordinate rotation. Bound-Layer Meteorol 107:1–48CrossRefGoogle Scholar
  15. Foken T (2008a) The energy balance closure problem – an overview. Ecol Appl 18:1351–1367CrossRefPubMedGoogle Scholar
  16. Foken T (2008b) Micrometeorology, Springer, Berlin, 308 pp (2nd edition 2017)CrossRefGoogle Scholar
  17. Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agric Forest Meteorol 127:223–234CrossRefGoogle Scholar
  18. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Forest Meteorol 78:83–105CrossRefGoogle Scholar
  19. Foken T, Skeib G, Richter SH (1991) Dependence of the integral turbulence characteristics on the stability of stratification and their use for Doppler-Sodar measurements. Z Meteorol 41:311–315Google Scholar
  20. Foken T, Jegede OO, Weisensee U, Richter SH, Handorf D, Görsdorf U, Vogel G, Schubert U, Kirzel H-J, Thiermann V (1997) Results of the LINEX-96/2 experiment. Dt Wetterdienst, Forsch. Entwicklung, Arbeitsergebnisse. 48:75 ppGoogle Scholar
  21. Foken T, Mangold A, Hierteis M, Wichura B, Rebmann C (1999) Characterization of the heterogeneity of the terrain by normalized turbulence characteristics. 13th symposium on boundary layer and turbulence, Dallas, TX, 10–15 Jan 1999. Am Meteorol Soc, Boston, pp 26–27Google Scholar
  22. Foken T, Mangold A, Rebmann C, Wichura B (2000) Characterization of a complex measuring site for flux measurements. 14th symposium on boundary layer and turbulence, Aspen, CO, 07–11 Aug 2000. Am Meteorol Soc, Boston, pp 388–389Google Scholar
  23. Foken T, Göckede M, Mauder M, Mahrt L, Amiro BD, Munger JW (2004) Post-field data quality control. In: Lee X et al (eds) Handbook of micrometeorology: a guide for surface flux measurement and analysis. Kluwer, Dordrecht, pp 181–208Google Scholar
  24. Foken T, Meixner FX, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012a) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment. Atmos Chem Phys 12:1923–1950CrossRefGoogle Scholar
  25. Foken T, Leuning R, Oncley SP, Mauder M, Aubinet M (2012b) Corrections and data quality. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131CrossRefGoogle Scholar
  26. Garratt JR (1978) Flux profile relations above tall vegetation. Quart J Roy Meteorol Soc 104:199–211CrossRefGoogle Scholar
  27. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 ppGoogle Scholar
  28. Göckede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agric Forest Meteorol 127:175–188CrossRefGoogle Scholar
  29. Göckede M, Mauder M, Foken T (2005a) Report on results for the site Weidenbrunnen (DE-Wei), CARBOEUROPE-IP, Task 1.2.1 Footprint and quality assessment of main flux sites (unpublished). University of Bayreuth, Department of Micrometeorology, Bayreuth, 16 ppGoogle Scholar
  30. Göckede M, Markkanen T, Mauder M, Arnold K, Leps JP, Foken T (2005b) Validation of footprint models using natural tracer measurements from a field experiment. Agric Forest Meteorol 135:314–325CrossRefGoogle Scholar
  31. Göckede M, Markkanen T, Hasager CB, Foken T (2006) Update of a footprint-based approach for the characterisation of complex measuring sites. Bound-Layer Meteorol 118:635–655CrossRefGoogle Scholar
  32. Göckede M, Thomas C, Markkanen T, Mauder M, Ruppert J, Foken T (2007) Sensitivity of Lagrangian stochastic footprints to turbulence statistics. Tellus. 59B:577–586CrossRefGoogle Scholar
  33. Göckede M, Foken T, Aubinet M, Aurela M, Banza J, Bernhofer C, Bonnefond J-M, Brunet Y, Carrara A, Clement R, Dellwik E, Elbers JA, Eugster W, Fuhrer J, Granier A, Grünwald T, Heinesch B, Janssens IA, Knohl A, Koeble R, Laurila T, Longdoz B, Manca G, Marek M, Markkanen T, Mateus J, Matteucci G, Mauder M, Migliavacca M, Minerbi S, Moncrieff JB, Montagnani L, Moors E, Ourcival J-M, Papale D, Pereira J, Pilegaard K, Pita G, Rambal S, Rebmann C, Rodrigues A, Rotenberg E, Sanz MJ, Sedlak P, Seufert G, Siebicke L, Soussana JF, Valentini R, Vesala T, Verbeeck H, Yakir D (2008) Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeoscience 5:433–450CrossRefGoogle Scholar
  34. Goulden ML, Munger JW, Fan F-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: method and critical evaluation of accuracy. Glob Chang Biol 2:159–168CrossRefGoogle Scholar
  35. Hasager CB, Jensen NO (1999) Surface-flux aggregation in heterogeneous terrain. Quart J Roy Meteorol Soc 125:2075–2102CrossRefGoogle Scholar
  36. Hasager CB, Nielsen NW, Jensen NO, Boegh E, Christensen JH, Dellwik E, Soegaard H (2003) Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model. Bound-Layer Meteorol 109:227–254CrossRefGoogle Scholar
  37. Hicks BB, Baldocchi DD, Meyers TP, Hosker RP Jr, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330CrossRefGoogle Scholar
  38. Högström U (1990) Analysis of turbulence structure in the surface layer with a modified similarity formulation for near neutral conditions. J Atmos Sci 47:1949–1972CrossRefGoogle Scholar
  39. Johansson C, Smedman A, Högström U, Brasseur JG, Khanna S (2001) Critical test of Monin-Obukhov similarity during convective conditions. J Atmos Sci 58:1549–1566CrossRefGoogle Scholar
  40. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, NY, 289 ppGoogle Scholar
  41. Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology, Springer, Heidelberg, 239 ppCrossRefGoogle Scholar
  42. Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Interscience Publishers, New York, NY, 239 ppGoogle Scholar
  43. Markkanen T, Steinfeld G, Kljun N, Raasch S, Foken T (2009) Comparison of conventional Lagrangian stochastic footprint models against LES driven footprint estimates. Atmos Chem Phys 9:5575–5586CrossRefGoogle Scholar
  44. Massman WJ, Weil JC (1999) An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Bound-Layer Meteorol 91:81–107CrossRefGoogle Scholar
  45. Mauder M, Foken T (2015) Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update). Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol, ISSN 1614–8916. 62:64Google Scholar
  46. Mauder M, Foken T, Clement R, Elbers J, Eugster W, Grünwald T, Heusinkveld B, Kolle O (2008) Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software. Biogeoscience 5:451–462CrossRefGoogle Scholar
  47. Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric Forest Meteorol 169:122–135CrossRefGoogle Scholar
  48. Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationship over a boreal forest – roughness sublayer correction. Agric Forest Meteorol 98-99:645–648CrossRefGoogle Scholar
  49. Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale ß meteorological model. Tellus 48A:733–749CrossRefGoogle Scholar
  50. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin HAR, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000, Part I: Overview and energy balance. Bound-Layer Meteorol 123:1–28CrossRefGoogle Scholar
  51. Panofsky HA, Dutton JA (1984) Atmospheric turbulence – models and methods for engineering applications. Wiley, New York, NY, 397 ppGoogle Scholar
  52. Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound-Layer Meteorol 11:355–361CrossRefGoogle Scholar
  53. Paw U KT, Baldocchi D, Meyers TP, Wilson KB (2000) Correction of eddy covariance measurements incorporating both advective effects and density fluxes. Bound-Layer Meteorol 97:487–511CrossRefGoogle Scholar
  54. Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over heterogeneous forest. Bound-Layer Meteorol 97:137–166CrossRefGoogle Scholar
  55. Rannik Ü, Markkanen T, Raittila T, Hari P, Vesala T (2003) Turbulence statistics inside and above forest: influence on footprint prediction. Bound-Layer Meteorol 109:163–189CrossRefGoogle Scholar
  56. Rannik Ü, Sogachev A, Foken T, Göckede M, Kljun N, Leclerc MY, Vesala T (2012) Footprint analysis. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Berlin, pp 211–261CrossRefGoogle Scholar
  57. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Layer Meteorol 78:351–382CrossRefGoogle Scholar
  58. Rebmann C (2003) Kohlendioxid-, Wasserdampf- und Energieaustausch eines Fichtenwaldes in Mittelgebirgslage. Dissertation, Universität Bayreuth, Bayreuth, 149 ppGoogle Scholar
  59. Rebmann C, Göckede M, Foken T, Aubinet M, Aurela M, Berbigier P, Bernhofer C, Buchmann N, Carrara A, Cescatti A, Ceulemans R, Clement R, Elbers J, Granier A, Grünwald T, Guyon D, Havránková K, Heinesch B, Knohl A, Laurila T, Longdoz B, Marcolla B, Markkanen T, Miglietta F, Moncrieff H, Montagnani L, Moors E, Nardino M, Ourcvial J-M, Rambal S, Rannik U, Rotenberg E, Sedlak P, Unterhuber G, Vesala T, Yakir D (2005) Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theor Appl Climat 80:121–141CrossRefGoogle Scholar
  60. Rebmann C, Kolle O, Heinesch B, Queck R, Ibrom A, Aubinet M (2012) Data acquisition and flux calculations. In: Aubinet M et al (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 59–83CrossRefGoogle Scholar
  61. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1424–1439CrossRefGoogle Scholar
  62. Reithmaier LM, Göckede M, Markkanen T, Knohl A, Churkina G, Rebmann C, Buchmann N, Foken T (2006) Use of remotely sensed land use classification for a better evaluation of micrometeorological flux measurement sites. Theor Appl Climat 84:219–233CrossRefGoogle Scholar
  63. Richards JA (1993) Remote sensing digital image analyse – an introduction. Springer, Berlin, 340 ppCrossRefGoogle Scholar
  64. Ruppert J, Mauder M, Thomas C, Lüers J (2006) Innovative gap-filling strategy for annual sums of CO2 net ecosystem exchange. Agric Forest Meteorol 138:5–18CrossRefGoogle Scholar
  65. Schmid HP (1994) Source areas for scalars and scalar fluxes. Bound-Layer Meteorol 67:293–318CrossRefGoogle Scholar
  66. Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric Forest Meteorol 87:179–200CrossRefGoogle Scholar
  67. Schuepp PH, Leclerc MY, MacPherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound-Layer Meteorol 50:355–373CrossRefGoogle Scholar
  68. Siebicke L (2008) Footprint synthesis for the FLUXNET site Waldstein/Weidenbrunnen (DE-Bay) during the EGER experiment. Arbeitsergebn, Univ Bayreuth, Abt Mikrometeorol, ISSN 1614–8916. 38:45 ppGoogle Scholar
  69. Siebicke L, Hunner M, Foken T (2012) Aspects of CO2-advection measurements. Theor Appl Climat 109:109–131CrossRefGoogle Scholar
  70. Steinfeld G, Raasch S, Markkanen T (2008) Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian stochastic particle model embedded into large-eddy simulation. Bound-Layer Meteorol 129:225–248CrossRefGoogle Scholar
  71. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Serrano-Ortiz P, Sottocornola M, Saunders M, Spano D, Vaccari F, Varlagin A (2012) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape-scale heterogeneity. Agric Forest Meteorol 171–172:137–152Google Scholar
  72. Tennekes H (1982) Similarity relations, scaling laws and spectral dynamics. In: Nieuwstadt FTM, Van Dop H (eds) Atmospheric turbulence and air pollution modelling. D. Reidel Publishing Company, Dordrecht, pp 37–68Google Scholar
  73. Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterisations. 15th conference on turbulence and boundary layers, Wageningen, NL, 15–19 July 2002. Am Meteorol Soc, Boston, pp 129–132Google Scholar
  74. Thomas C, Foken T (2007a) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound-Layer Meteorol 122:123–147CrossRefGoogle Scholar
  75. Thomas C, Foken T (2007b) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Layer Meteorol 123:317–337CrossRefGoogle Scholar
  76. Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Clim Appl Meteorol 11:783–792CrossRefGoogle Scholar
  77. Vesala T, Rannik U, Leclerc MY, Foken T, Sabelfeld KK (2004) Foreword: Flux and concentration footprints. Agric Forest Meteorol 127:111–116CrossRefGoogle Scholar
  78. Vesala T, Kljun N, Rannik U, Rinne J, Sogachev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2008) Flux and concentration footprint modelling: state of the art. Environ Pollut 152:653–666CrossRefPubMedGoogle Scholar
  79. Vesala T, Kljun N, Rannik Ü, Rinne J, Sogatchev A, Markkanen T, Sabelfeld K, Foken T, Leclerc MY (2010) Flux and concentration footprint modelling. In: Hanrahan G (ed) Modelling of pollutants in complex environmental systems, vol II. ILM Publications, St. Albans, Glendale, pp 339–355Google Scholar
  80. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14:512–526CrossRefGoogle Scholar
  81. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150CrossRefGoogle Scholar
  82. Wilson KB, Goldstein AH, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Law B, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric Forest Meteorol 113:223–234CrossRefGoogle Scholar
  83. Wohlfahrt G, Anfang C, Bahn M, Haslwanter A, Newesely C, Schmitt M, Drösler M, Pfadenhauer J, Cernusca A (2005) Quantifying nighttime ecosystem respiration of a meadow using eddy covariance, chambers and modelling. Agric Forest Meteorol 128:141–162CrossRefGoogle Scholar
  84. Wulfmeyer V, Behrendt A, Kottmeier C, Corsmeier U, Barthlott C, Craig G, Hagen M, Althausen D, Aoshima F, Arpagaus M, Bauer HS, Bennett L, Blyth A, Brandau C, Champollion C, Crewell S, Dick G, Di Girolamo P, Dorninger M, Dufournet Y, Eigenmann R, Engelmann R, Flamant C, Foken T, Gorgas T, Grzeschik M, Handwerker J, Hauck C, Höller H, Junkermann W, Kalthoff N, Kiemle C, Klink S, König M, Krauß L, Long CN, Madonna F, Mobbs S, Neininger B, Pal S, Peters G, Pigeon G, Richard E, Rotach M, Russchenberg H, Schwitalla T, Smith V, Steinacker R, Trentmann J, Turner DD, van Baelen J, Vogt S, Volkert H, Weckwerth T, Wernli H, Wieser A, Wirth M (2011) The convective and orographically induced precipitation study (COPS): the scientific strategy, the field phase, and research highlights. Quart J Roy Meteorol Soc 137:3–30CrossRefGoogle Scholar
  85. Wyngaard JC (1988) Flow-distortion effects on scalar flux measurements in the surface layer: implications for sensor design. In: Hicks BB (ed) Topics in micrometeorology. A Festschrift for Arch Dyer. Springer Netherlands, Dordrecht, pp 19–26CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Thomas Foken
    • 1
    • 2
  • Mathias Göckede
    • 3
  • Johannes Lüers
    • 4
  • Lukas Siebicke
    • 5
  • Corinna Rebmann
    • 6
  • Johannes Ruppert
    • 7
  • Christoph K. Thomas
    • 2
    • 8
  1. 1.BischbergGermany
  2. 2.Bayreuth Center of Ecology and Environmental researchUniversity of BayreuthBayreuthGermany
  3. 3.Max-Planck-Institute for BiogeochemistryJenaGermany
  4. 4.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany
  5. 5.BioclimatologyGeorg-August-University GöttingenGöttingenGermany
  6. 6.Helmholtz-Centre for Environmental Research – UFZLeipzigGermany
  7. 7.Research Institute of the Cement IndustryDüsseldorfGermany
  8. 8.Group of MicrometeorologyUniversity of BayreuthBayreuthGermany

Personalised recommendations