Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 247-276

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

Influence of Low-Level Jets and Gravity Waves on Turbulent Fluxes

  • Andrei Serafimovich
  • Jörg Hübner
  • Monique Y. Leclerc
  • Henrique F. Duarte
  • Thomas Foken
Chapter

Abstract

Atmospheric waves and local wind phenomena in the atmospheric boundary layer are common forms of air motions observed above the forest canopy at night. Low-level jets with duration times of several hours and the gravity wave event were detected by SODAR-RASS and miniSODAR systems installed in the Fichtelgebirge Mountains in Germany.

Varying wind directions with low turbulence and wind speed are observed at times of sunrise and sunset. At midday, secondary circulations due to convection over a big clear-cut are possible. The existence of a low-level jet seems to be independent of the general weather situation. At nighttimes and during the morning hours the profile of the wind vector often shows a strong turn of the wind direction with increasing height.

As a result, gravity wave generation was connected to the wind shear effect and change of the wind direction observed in the ascending low-level jet. The observed period and vertical wavelength were obtained by application of the wavelet transform, allowing the gravity wave to be filtered from the mean wind flow. A comprehensive study of gravity wave parameters was done using the linear wave theory. The analysis of the wind perturbation profiles indicates a downward wave energy propagation above the canopy level. The eddy-covariance measurements are used to investigate the impact of the gravity wave on the generation of coherent structures and turbulent transport. It was shown that coherent structures have smaller temporal scales when the gravity wave occurs, in contrast to the period before the wave was detected. It was found that there was a significant impact of the gravity wave on the momentum exchange, and that this led to the higher transport of the momentum during the ejection phases of coherent structures, whereas the sweep phases were mostly responsible for transport in the absence of the gravity wave in the mean flow.

References

  1. Antonia RA (1981) Conditional sampling in turbulence measurements. Ann Rev Fluid Mech 13:131–156. doi:10.1146/annurev.fl.13.010181.001023CrossRefGoogle Scholar
  2. Baas AFD, Driedonks AGM (1985) Internal gravity waves in a stably stratified boundary layer. Bound-Layer Meteorol 31:303–323CrossRefGoogle Scholar
  3. Baldocchi D, Falge E, Lianhong G, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434CrossRefGoogle Scholar
  4. Banta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L (2002) Nocturnal low-level jet characteristics over Kansas during cases-99. Bound-Layer Meteorol 105:221–252CrossRefGoogle Scholar
  5. Bergström H, Högström U (1989) Turbulent exchange above a pine forest II. Organized structures. Bound-Layer Meteorol 49:231–263. doi:10.1007/BF00120972CrossRefGoogle Scholar
  6. Blackadar AK (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 38:283–290Google Scholar
  7. Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96:833–850CrossRefGoogle Scholar
  8. Brunet Y, Collineau S (1994) Wavelet analysis of diurnal and nocturnal turbulence above a maize canopy. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics, wavelet analysis and its applications, vol 4. Academic Press, San Diego, pp 129–150Google Scholar
  9. Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Bound-Layer Meteorol 94:139–163. doi:10.1023/A:1002406616227CrossRefGoogle Scholar
  10. Cava D, Giostra U, Siqueira M, Katul G (2004) Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest. Bound-Layer Meteorol 112:129–157. doi:10.1023/B:BOUN.0000020160.28184.a0CrossRefGoogle Scholar
  11. Chen J, Hu F (2003) Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Bound.-Layer Meteorol 107:429–444. doi:10.1023/A:1022162030155CrossRefGoogle Scholar
  12. Cheng Y, Parlange MB, Brutsaert W (2005) Pathology of Monin-Obukhov similarity in the stable boundary layer. J Geophys Res 110:D06,101. doi:10.1029/2004JD004923Google Scholar
  13. Cho J (1995) Inertio-gravity wave parameter estimation from cross-spectral analysis. J Geophys Res 100:18,727–18,737CrossRefGoogle Scholar
  14. Clifford SF, Kaimal JC, Lataitis RJ, Strauch RG (1994) Ground-based remote profiling in atmospheric studies - an overview. In: Proceedings of the IEEE, vol 82, pp 313–355CrossRefGoogle Scholar
  15. Eckermann S, Vincent R (1989) Falling sphere observations gravity waves motions in the upper stratosphere over Australia. Pageoph 130:509–532CrossRefGoogle Scholar
  16. Einaudi F, Finnigan JJ (1993) Wave-turbulence dynamics in the stably stratified boundary layer. J Atmos Sci 50:1841–1864. doi:10.1175/1520–0469(1993)050 < 1841:WTDITS > 2.0.CO;2Google Scholar
  17. Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571. doi:10.1146/annurev.fluid.32.1.519CrossRefGoogle Scholar
  18. Foken T, Meixner F, Falge E, Zetzsch C, Serafimovich A, Bargsten A, Behrendt T, Biermann T, Breuninger C, Dix S, Gerken T, Hunner M, Lehmann-Pape L, Hens K, Jocher G, Kesselmeier J, Lüers J, Mayer JC, Moravek A, Plake D, Riederer M, Rütz F, Scheibe M, Siebicke L, Sörgel M, Staudt K, Trebs I, Tsokankunku A, Welling M, Wolff V, Zhu Z (2012) Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site results of the EGER experiment. Atmos Chem Phys 12:1923–1950. doi:10.5194/acp-12-1923-2012CrossRefGoogle Scholar
  19. Foster RC, Vianey F, Drobinski P, Carlotti P (2006) Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer. Bound-Layer Meteorol 120:229–255. doi:10.1007/s10546-006-9054-8CrossRefGoogle Scholar
  20. Gao W, Shaw RH, Paw U KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Bound-Layer Meteorol 47:349–377. doi:10.1007/BF00122339CrossRefGoogle Scholar
  21. Gerstberger P, Foken T, Kalbitz K (2004) The Lehstenbach and Steinkreuz chatchments in NE Bavaria, Germany. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment: ecological Studies, vol 172. Springer, Heidelberg, pp 15–41CrossRefGoogle Scholar
  22. Gill AE (1982) Atmosphere-Ocean dynamics. Academic, San DiegoGoogle Scholar
  23. Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier, New YorkGoogle Scholar
  24. Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. J Math Anal 15:723–736Google Scholar
  25. Guest FM, Reeder MJ, Marks CJ, Karoly DJ (2000) Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. J Atmos Sci 57:737–752CrossRefGoogle Scholar
  26. Hoffmann P, Rapp M, Serafimovich A, Latteck R (2005) On the occurrence and formation of multiple layers of polar mesosphere summer echoes. Geophys Res Lett 32, L05812. doi:10.1029/2004GL021409CrossRefGoogle Scholar
  27. Holton J (1967) The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19:199–205CrossRefGoogle Scholar
  28. Hübner J, Olesch J, Falke H, Meixner FX, Foken T (2014) A horizontal mobile measuring system for atmospheric quantities. Atmos Meas Tech 7:2967–2980CrossRefGoogle Scholar
  29. Karipot A, Leclerc MY, Zhang G, Martin T, Starr G, Hollinger D, McCaughey JH, Hendrey GR (2006) Nocturnal CO2 exchange over a tall forest canopy associated with intermittent low-level jet activity. Theor Appl Climatol 85:243–248CrossRefGoogle Scholar
  30. Katul G, Kuhn G, Schieldge J, Hsieh CI (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Bound-Layer Meteorol 83:1–26. doi:10.1023/A:1000293516830CrossRefGoogle Scholar
  31. King JC, Mobbs SD, Darby MS, Rees JM (1987) Observations of an internal gravity wave in the lower troposphere at Halley, Antarctica. Bound-Layer Meteorol 39:1–13. doi:10.1007/BF00121862CrossRefGoogle Scholar
  32. Koch SE, O’Handley C (1997) Operational forecasting and detection of mesoscale gravity waves. Wea Forecast 12:253–281. doi:10.1175/1520-0434(1997)012 < 0253:OFADOM > 2.0.CO;2Google Scholar
  33. Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through wavelet transforms. Int J Pattern Recognit Artif Intell 1:273–302CrossRefGoogle Scholar
  34. Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385–412CrossRefGoogle Scholar
  35. Kunze E (1985) Near-inertial wave propagation in geostrophic shear. J Phys Oceanogr 15:544–565CrossRefGoogle Scholar
  36. Lee X, Neumann H, Hartog G, Mickle R, Fuentes J, Black T, Yang P, Blanken P (1997) Observation of gravity waves in a boreal forest. Bound-Layer Meteorol 84:383–398. doi:10.1023/A:1000454030493CrossRefGoogle Scholar
  37. Lehmann V, Dibbern J, Görsdorf U, Neuschaefer J, Steinhagen H (2003) The new operational UHF wind profiler radars of the deutscher wetterdienst. In: Wandinger U, Engelmann R, Schmieder K (eds) 6th International Symposium on Tropospheric Proling (ISTP) - extended abstracts. Institute for Tropospheric Research, pp 489–491Google Scholar
  38. Lindzen RS, Tung KK (1976) Banded convective activity and ducted gravity waves. Mon Weather Rev 104:1602–1617. doi:10.1175/1520-0493(1976)1048 < 1602:BCAADG > 2.0.CO;2Google Scholar
  39. Maitani T, Shaw RH (1990) Joint probability analysis of momentum and heat fluxes at a deciduous forest. Bound-Layer Meteorol 52:283–300. doi:10.1007/BF00122091CrossRefGoogle Scholar
  40. Nappo CJ (2012) An introduction to atmospheric gravity waves. International geophysics series, vol 102. Academic, San DiegoGoogle Scholar
  41. Nappo CJ, Miller DR, Hiscox AL (2008) Wave-modified flux and plume dispersion in the stable boundary layer. Bound-Layer Meteorol 129:211–223. doi:10.1007/s10546-008-9315-9CrossRefGoogle Scholar
  42. Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61:55–68CrossRefGoogle Scholar
  43. Pecnick MJ, Young JA (1984) Mechanics of a strong subsynoptic gravity wave deduced from satellite and surface observations. J Atmos Sci 41:1850–1862. doi:10.1175/1520-0469(1984)041 < 1850:MOASSG > 2.0.CO;2Google Scholar
  44. Pike CJ (1994) Analysis of high resolution marine seismic data using wavelet transform. In: Foufoula-Georgiou E, Kumar P (eds) Wavelets in geophysics. Wavelet analysis and its applications, vol 4. Academic, San Diego, pp 183–211CrossRefGoogle Scholar
  45. Raupach MR, Thom AS (1981) Turbulence in and above plant canopies. Ann Rev Fluid Mech 13:97–129CrossRefGoogle Scholar
  46. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Layer Meteorol 78:351–382. doi:10.1007/BF00120941CrossRefGoogle Scholar
  47. Rees JM, Staszewskib WJ, Winklerc JR (2001) Case study of a wave event in the stable atmospheric boundary layer overlying an Antarctic Ice Shelf using the orthogonal wavelet transform. Dyn Atmos Oceans 34:245–261. doi:10.1016/S0377-0265(01)00070-7CrossRefGoogle Scholar
  48. Sato K (1994) A statistical study of the structure, saturation and sources of inertia-gravity waves in the lower stratosphere observed with the MU radar. J Atmos Terr Phys 56:755–774CrossRefGoogle Scholar
  49. Sauvageot H (1992) Radar meteorology. Artech House, BostonGoogle Scholar
  50. Serafimovich A, Thomas C, Foken T (2011) Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Bound-Layer Meteorol 140:429–451. doi:10.1007/s10546-011-9619-zCrossRefGoogle Scholar
  51. Shaw RH, Paw U KT, Gao W (1989) Detection of temperature ramps and flow structures at a deciduous forest site. Agric For Meteorol 47:123–138CrossRefGoogle Scholar
  52. Smedman AS, Bergström H, Högström U (1995) Spectra, variances and length scales in a marine stable boundary layer dominated by a low level jet. Bound-Layer Meteorol 76:211–232. doi:10.1007/BF00709352CrossRefGoogle Scholar
  53. Staudt K, Foken T (2007) Documentation of reference data for the experimental areas of the Bayreuth Centre for Ecology and Environmental Research (BayCEER) at the Waldstein site. Arbeitsergebnisse, Universität Bayreuth, Abt Mikrometeorologie. Print, ISSN:1614-8916 35:37Google Scholar
  54. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht/Boston/LondonCrossRefGoogle Scholar
  55. Sun J, Lenschow DH, Burns SP, Banta RM, Newsom RK, Coulter R, Frasier S, Ince T, Nappo C, Balsley BB, Jensen M, Mahrt L, Miller D, Skelly B (2003) Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers. Bound-Layer Meteorol 110:255–279. doi:10.1023/A:1026097926169CrossRefGoogle Scholar
  56. Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80:91–104. doi:10.1007/s00704-004-0093-0CrossRefGoogle Scholar
  57. Thomas C, Foken T (2007a) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Layer Meteorol 123:317–337. doi:10.1007/s10546-006-9144-7CrossRefGoogle Scholar
  58. Thomas C, Foken T (2007b) Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound-Layer Meteorol 122:123–147. doi:10.1007/s10546-006-9087-zCrossRefGoogle Scholar
  59. Thomas C, Mayer JC, Meixner FX, Foken T (2006) Analysis of low-frequency turbulence above tall vegetation using a doppler sodar. Bound-Layer Meteorol 119:563–587CrossRefGoogle Scholar
  60. Thompson R (1978) Observation of inertial waves in the stratosphere. Q J R Meteorol Soc 104:691–698CrossRefGoogle Scholar
  61. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  62. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14:512–526. doi:10.1175/1520-0426(1997)014 < 0512:QCAFSP > 2.0.CO;2Google Scholar
  63. Vincent R, Fritts D (1987) A climatology of gravity wave motions in the mesopause region at Adelaide, Australia. J Atmos Sci 44:748–760CrossRefGoogle Scholar
  64. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150. doi:10.1023/A:1018966204465CrossRefGoogle Scholar
  65. Zhang F, Wang S, Plougonven R (2004) Uncertainties in using the hodograph method to retrieve gravity wave characteristics from individual soundings. Geophys Res Lett 31:L11110. doi:10.1029/2004GL019841Google Scholar
  66. Zink F, Vincent R (2001) Wavelet analysis of stratospheric gravity wave packets over Macquarie Island. J Geophys Res 106:10275–10288CrossRefGoogle Scholar
  67. Zülicke C, Peters D (2006) Simulation of inertiagravity waves in a poleward-breaking Rossby wave. J Atmos Sci. doi:10.1175/JAS3805.1Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrei Serafimovich
    • 1
  • Jörg Hübner
    • 2
  • Monique Y. Leclerc
    • 3
  • Henrique F. Duarte
    • 4
  • Thomas Foken
    • 5
    • 6
  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Uhl Windkraft Projektierung GmbH & Co. KGEllwangenGermany
  3. 3.Atmospheric Biogeosciences LabThe University of GeorgiaGriffinUSA
  4. 4.Department of Atmospheric SciencesCollege of Mines and Earth Sciences, University of UtahSalt Lake CityUSA
  5. 5.BischbergGermany
  6. 6.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany

Personalised recommendations