Energy and Matter Fluxes of a Spruce Forest Ecosystem pp 209-245

Part of the Ecological Studies book series (ECOLSTUD, volume 229) | Cite as

Isotope Fluxes

  • Bodo Wichura
  • Johannes Ruppert
  • Michael Riederer
  • Thomas Foken
Chapter

Abstract

The determination of net ecosystem CO2 exchange (NEE) has become a fundamental tool for the investigation of the carbon balance of terrestrial ecosystems. The derivation of the annual sum of NEE is complicated by characteristic diurnal and seasonal variation in the governing gross flux components of assimilation and respiration. Therefore, additional information is required to achieve both the partitioning of NEE into its component fluxes and an understanding of the corresponding processes. This might be provided by a tracer, which could identify the individual contributions to the net flux at ecosystem scale.

The isotopic signature of CO2—that is, the CO2 isotope ratios with respect to 13CO2—can serve as a tracer because photosynthetic uptake discriminates against the heavier isotope. Isotope mass balances may be determined by measurements of 13CO2 iso-fluxes. A sufficient signal-to-noise ratio for the isotopic parameters is essential for the determination of 13CO2 iso-fluxes. The hyperbolic relaxed eddy accumulation (HREA) method allows for maximized differences of the isotopic signatures in samples for appropriate laboratory analysis.

HREA measurements of 13CO2 iso-fluxes were conducted at FLUXNET station DE-Bay (Waldstein-Weidenbrunnen) during three intensive measuring campaigns in 1999, 2000, and 2003. Furthermore, HREA 13CO2 iso-fluxes were measured at the extensively managed submontane grassland site “Voitsumra,” near the Waldstein-Weidenbrunnen site, during an intensive measuring campaign in 2010. Results of 13CO2 iso-flux measurements highlight their capabilities for NEE flux partitioning as well as for the examination of CO2 exchange mechanisms over forests.

References

  1. Ammann C (1999) On the applicability of relaxed eddy accumulation and common methods for measuring trace gas fluxes, vol 73. Zürcher Geographische Schriften, ZürichGoogle Scholar
  2. Ammann C, Meixner FX (2002) Stability dependence of the relaxed eddy accumulation coefficient for various scalar quantities. J Geophys Res 107(D8):ACL7-1–ACL7-9CrossRefGoogle Scholar
  3. Ammann C, Flechard CR, Leifeld J, Neftel A, Fuhrer J (2007) The carbon budget of newly established temperate grassland depends on management intensity. Agr Ecosyst Environ 121(1–2):5–20CrossRefGoogle Scholar
  4. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175CrossRefGoogle Scholar
  5. Aubinet M, Vesala T, Papale D (eds) (2012) Eddy covariance. A practical guide to measurement and data analysis, Springer atmospheric sciences. Springer Netherlands, DordrechtGoogle Scholar
  6. Baker JM (2000) Conditional sampling revisited. Agric For Meteorol 104:59–65CrossRefGoogle Scholar
  7. Baker JM, Norman JM, Bland WL (1992) Field-scale application of flux measurement by conditional sampling. Agric For Meteorol 62:31–52CrossRefGoogle Scholar
  8. Baldocchi D (2014) Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method. Glob Chang Biol 20(12):3600–3609CrossRefPubMedGoogle Scholar
  9. Baldocchi DD, Bowling DR (2003) Modelling the discrimination of 13CO2 above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. Plant Cell Environ 26(2):231–244CrossRefGoogle Scholar
  10. Baldocchi D, Valentini R (2004) Geographic and temporal variation of carbon exchange by ecosystems and their sensitivity to environmental perturbations. In: The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, DC, pp 479–491Google Scholar
  11. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes R, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82(11):2415–2434CrossRefGoogle Scholar
  12. Beverland IJ, Milne R, Boissard C, ONeill DH, Moncrieff JB (1996) Measurements of carbon dioxide and hydrocarbon fluxes from a sitka spruce forest using micrometeorological techniques. J Geophys Res 101(D17):22807–22815CrossRefGoogle Scholar
  13. Bowling DR, Turnipseed AA, Delany AC, Baldocchi DD, Greeoberg JP, Monson RK (1998) The use of relaxed eddy accumulation to measure biosphere-atmosphere exchange of isoprene and other biological trace gases. Oecologia 116(3):306–315CrossRefGoogle Scholar
  14. Bowling DR, Baldocchi DD, Monson RK (1999a) Dynamics of isotopic exchange of carbon dioxide in a Tennessee deciduous forest. Global Biogeochem Cycles 13(4):903–922CrossRefGoogle Scholar
  15. Bowling DR, Delany AC, Turnispseed AA, Baldocchi DD, Monson RK (1999b) Modification of the relaxed eddy accumulation technique to maximize measured scalar mixing ratio differences in updrafts and downdrafts. J Geophys Res 104(D8):9121–9133CrossRefGoogle Scholar
  16. Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Chang Biol 7:127–145CrossRefGoogle Scholar
  17. Bowling DR, Pataki DE, Ehleringer JR (2003) Critical evaluation of micrometeorological methods for measuring ecosystem-atmosphere isotopic exchange of CO2. Agric For Meteorol 116(3-4):159–179CrossRefGoogle Scholar
  18. Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Bound-Lay Meteorol 94(1):139–163CrossRefGoogle Scholar
  19. Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635CrossRefGoogle Scholar
  20. Buchmann N, Kao W-Y, Ehleringer J (1997) Influence of stand structure on carbon C-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 110:109–119CrossRefGoogle Scholar
  21. Buchmann N, Brooks JR, Flanagan LB, Ehleringer JR (1998) Carbon isotope discrimination of terrestrial ecosystems. In: Griffiths H, Robinson D, Van Gardingen P (eds) Stable isotopes and the integration of biological, ecological and geochemical processes. BIOS Scientific Publishers Ltd., OxfordGoogle Scholar
  22. Businger JA, Delany AC (1990) Chemical sensor resolution required for measuring surface fluxes by three common micrometeorological techniques. J Atmos Chem 10:399–410CrossRefGoogle Scholar
  23. Businger JA, Oncley SP (1990) Flux measurement with conditionial sampling. J Atmos Oceanic Tech 7:349–352CrossRefGoogle Scholar
  24. Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995) A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269:1098–1101CrossRefPubMedGoogle Scholar
  25. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002) Stable isotopes in plant ecology. Annu Rev Ecol Syst 33:507–559CrossRefGoogle Scholar
  26. Delany AC, Oncley SP, Businger JA, Sievering E (1991) Adapting the conditional sampling concept for a range of different chemical species. In: Seventh symposium on meteorological observations and instruments, New Orleans, LA, 14–18 January 1991. American Meteorological Society, pp 22–25Google Scholar
  27. Ehleringer JR, Bowling DR, Flanagan LB, Fessenden J, Helliker B, Martinelli LA, Ometto JP (2002) Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol 4:181–189CrossRefGoogle Scholar
  28. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69CrossRefGoogle Scholar
  29. Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant-water relations. Physiological ecology. Academic Press, San Diego, CA, pp 47–70Google Scholar
  30. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  31. Field CB, Raupach MR (2004) the global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, DCGoogle Scholar
  32. Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571CrossRefGoogle Scholar
  33. Flanagan LB, Ehleringer JR (1998) Ecosystem-atmosphere CO2 exchange: interpreting signals of change using stable isotope ratios. Trends Ecol Evol 13(1):10–14CrossRefPubMedGoogle Scholar
  34. Flanagan LB, Brooks JR, Varney GT, Berry SC, Ehleringer JR (1996) Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems. Global Biogeochem Cycles 10(4):629–640CrossRefGoogle Scholar
  35. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  36. Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z 4:91–118Google Scholar
  37. Foken T, Wichura B, Klemm O, Gerchau J, Winterhalter M, Weidinger T (2001) Micrometeorological conditions during the total solar eclipse of August 11, 1999. Meteorol Z 10:171–178CrossRefGoogle Scholar
  38. Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer Netherlands, Dordrecht, pp 85–131CrossRefGoogle Scholar
  39. Fotiadi AK, Lohou F, Druilhet A, Serça D, Brunet Y, Delmas R (2005) Methodological development of the conditional sampling method. Part I: Sensitivity to statistical and technical characteristics. Bound-Lay Meteorol 114(3):615–640CrossRefGoogle Scholar
  40. Gao W (1995) The vertical change of coefficient b, used in the relaxed eddy accumulation method for flux measurement above and within a forest canopy. Atmos Environ 29(17):2339–2347CrossRefGoogle Scholar
  41. Ghosh P, Patecki M, Rothe M, Brand WA (2005) Calcite-CO2 mixed into CO2-free air: a new CO2-in-air stable isotope reference material for the VPDB scale. Rapid Commun Mass Spectrom 19(8):1097–1119CrossRefGoogle Scholar
  42. Goulden ML, Munger JW, Song-Miao F, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2(3):169–182CrossRefGoogle Scholar
  43. Grace J, Rayment M (2000) Respiration in the balance. Nature 404:819–820CrossRefPubMedGoogle Scholar
  44. Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004) Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agric For Meteorol 124(1–2):15–29CrossRefGoogle Scholar
  45. Griffis TJ, Sargent SD, Baker JM, Lee X, Tanner BD, Greene J, Swiatek E, Billmark K (2008) Direct measurement of biosphere-atmosphere isotopic CO2 exchange using the eddy covariance technique. J Geophys Res Atmos 113(D8):20CrossRefGoogle Scholar
  46. Guenther A, Baugh W, Davis K, Hampton G, Harley P, Klinger L, Vierling L, Zimmerman P, Allwine E, Dilts S, Lamb B, Westberg H, Baldocchi D, Geron C, Pierce T (1996) Isoprene fluxes measured by enclosure, relaxed eddy accumulation, surface layer gradient, mixed layer gradient, and mixed layer mass balance techniques. J Geophys Res 101(D13):18555–18567CrossRefGoogle Scholar
  47. Helliker BR, Berry JA, Betts AK, Bakwin PS, Davis KJ, Ehleringer JR, Butler MP, Ricciuto DM (2005) Regional-scale estimates of forest CO2 and isotope flux based on monthly CO2 budgets of the atmospheric boundary layer. In: Griffiths H, PG J (eds) The carbon balance of forest biomes. Taylor & Francis Group, New York, pp 77–92Google Scholar
  48. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  49. Katul G, Albertson J, Chu C-R, Parlange M, Stricker H, Tylor S (1994) Sensible and latent heat flux predictions using conditional sampling methods. Water Resour Res 30(11):3053–3059CrossRefGoogle Scholar
  50. Katul GG, Finkelstein PL, Clarke JF, Ellestad TG (1996) An investigation of the conditional sampling method used to estimate fluxes of active, reactive, and passive scalars. J Appl Meteorol 35(10):1835–1845CrossRefGoogle Scholar
  51. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334CrossRefGoogle Scholar
  52. Keeling CD (1961) The concentration and isotopic abundance of carbon dioxide in rural and marine air. Geochim Cosmochim Acta 24:277–298CrossRefGoogle Scholar
  53. Knohl A, Buchmann N (2005) Partitioning the net CO2 flux of a deciduous forest into respiration and assimilation using stable carbon isotopes. Glob Biogeochem Cycles 19:4 (GB4008)CrossRefGoogle Scholar
  54. Kuzyakov Y, Gavrichkova O (2010) REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16(12):3386–3406CrossRefGoogle Scholar
  55. Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agric For Meteorol 91:39–49CrossRefGoogle Scholar
  56. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Func Ecol 8:315–323CrossRefGoogle Scholar
  57. Lloyd J, Kruijt B, Hollinger DY, Grace J, Francey RJ, Wong S-C, Kelliher FM, Miranda AC, Farquhar GD, Gash JHC, Vygodskaya NN, Wright IR, Miranda HS, Schulze E-D (1996) Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Austral J Plant Physiol 23:371–399CrossRefGoogle Scholar
  58. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung, Kinetics of the invertin reaction. Biochem Z 49:333–369Google Scholar
  59. Milne R, Beverland IJ, Hargraeves K, Moncrieff JB (1999) Variation of the b coefficient in the relaxed eddy accumulation method. Bound-Lay Meteorol 93:211–225CrossRefGoogle Scholar
  60. Milne R, Mennim A, Hargreaves K (2001) The value of the β coefficient in the relaxed eddy accumulation method in terms of fourth-order moments. Bound-Lay Meteorol 101(3):359–373CrossRefGoogle Scholar
  61. Moncrieff JB, Malhi Y, Leuning R (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Glob Chang Biol 2(3):231–240CrossRefGoogle Scholar
  62. Moravek A, Foken T, Trebs I (2014) Application of a GC-ECD for measurements of biosphere-atmosphere exchange fluxes of peroxyacetyl nitrate using the relaxed eddy accumulation and gradient method. Atmos Meas Tech 7(7):2097–2119CrossRefGoogle Scholar
  63. Nie D, Kleindienst TE, Arnts RR, Sickles JE (1995) The design and testing of a relaxed eddy accumulation system. J Geophys Res 100(D6):11415–11423CrossRefGoogle Scholar
  64. O’Leary MH (1993) Biochemical basis of carbon isotope fractionation. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant-water relations. Physiological ecology. Academic Press, San Diego, CA, pp 19–28Google Scholar
  65. O’Leary MH, Madhavan S, Paneth P (1992) Physical and chemical basis of carbon isotope fractionation in plants. Plant Cell Environ 15:1099–1104CrossRefGoogle Scholar
  66. Ogée J, Peylin P, Ciais P, Bariac T, Brunet Y, Berbigier P, Roche C, Richard P, Bardoux G, Bonnefond JM (2003) Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: a cost-effective sampling strategy. Global Biogeochem Cycles 17(2):1070CrossRefGoogle Scholar
  67. Ogée J, Peylin P, Cuntz M, Bariac T, Brunet Y, Berbigier P, Richard P, Ciais P (2004) Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: an error propagation analysis with 13CO2 and CO18O data. Global Biogeochem Cycles 18(2):GB2019CrossRefGoogle Scholar
  68. Oncley SP, Delany AC, Horst TW, Tans PP (1993) Verification of flux measurement using relaxed eddy accumulation. Atmos Environ 27A(15):2417–2426CrossRefGoogle Scholar
  69. Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem Cycles 17(1):22-1–22-14CrossRefGoogle Scholar
  70. Pattey E, Desjardins RL, Rochette P (1993) Accuracy of the relaxed eddy-accumulation technique, evaluated using CO2 flux measurements. Bound-Lay Meteorol 66(4):341–355CrossRefGoogle Scholar
  71. Paw U KT, Baldocchi DD, Meyers TP, Wilson KB (2000) Correction of eddy-covariance mesurements incorporating both advective effects and density fluxes. Bound-Lay Meteorol 97:487–511CrossRefGoogle Scholar
  72. Raupach MR (2001) Inferring biogeochemical sources and sinks from atmospheric concentrations: general considerations and applications in vegetation canopies. In: Schulze E-D, Heimann M, Harrison S et al (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, CA, pp 416, 441–459Google Scholar
  73. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound-Lay Meteorol 78:351–382CrossRefGoogle Scholar
  74. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11(9):1424–1439CrossRefGoogle Scholar
  75. Reichstein M, Papale D, Valentini R, Aubinet M, Bernhofer C, Knohl A, Laurila T, Lindroth A, Moors E, Pilegaard K, Seufert G (2007) Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys Res Lett 34(L01402):1–5Google Scholar
  76. Riederer M, Hübner J, Ruppert J, Brand WA, Foken T (2014) Prerequisites for application of hyperbolic relaxed eddy accumulation on managed grasslands and alternative net ecosystem exchange flux partitioning. Atmos Meas Tech 7(12):4237–4250CrossRefGoogle Scholar
  77. Ruppert J (2005) ATEM software for atmospheric turbulent echange measurements using eddy covariance and relaxed eddy accumulation systems and Bayreuth whole-air REA system setup. Abt Mikrometeorologie, Arbeitsergebnisse 28:Print: ISSN 1614-8916, 1627 ppGoogle Scholar
  78. Ruppert J (2008) CO2 and isotope flux measurements above a spruce forest. PhD-Thesis, online publication: urn:nbn:de:bvb:703-opus-5419. University of Bayreuth, BayreuthGoogle Scholar
  79. Ruppert J, Wichura B, Delany AC, Foken T (2002) Eddy sampling methods. A comparison using simulation results. In: 15th symposium on boundary layer and turbulence, Wageningen, 15–19 July 2002. Am Meteorol Soc, pp 27–30Google Scholar
  80. Ruppert J, Mauder M, Thomas C, Lüers J (2006a) Innovative gap-filling strategy for annual sums of CO2 net ecosystem exchange. Agric For Meteorol 138(1–4):5–18CrossRefGoogle Scholar
  81. Ruppert J, Thomas C, Foken T (2006b) Scalar similarity for relaxed eddy accumulation methods. Bound-Lay Meteorol 120:39–63CrossRefGoogle Scholar
  82. Ruppert J, Riederer M, Brand WA, Foken T (2012) Whole-air relaxed eddy accumulation for the measurement of isotope and trace-gas fluxes. Arbeitsergebnisse, Universität Bayreuth, Abt. Mikrometeorologie, vol 51. University of Bayreuth, BayreuthGoogle Scholar
  83. Sharp RE, Matthews MA, Boyer JS (1984) Kok effect and the quantum yield of photosynthesis light partially inhibits dark respiration. Plant Physiol 75(1):95–101CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sturm P, Eugster W, Knohl A (2012) Eddy covariance measurements of CO2 isotopologues with a quantum cascade laser absorption spectrometer. Agric For Meteorol 152:73–82CrossRefGoogle Scholar
  85. Suits NS, Denning AS, Berry JA, Still CJ, Kaduk J, Miller JB, Baker IT (2005) Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochem Cycles 19(1):n/a–n/aGoogle Scholar
  86. Thomas CK, Foken T (2007) Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound-Lay Meteorol 123(2):317–337CrossRefGoogle Scholar
  87. Thomas C, Martin JG, Goeckede M, Siqueira MB, Foken T, Law BE, Loescher HW, Katul G (2008) Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agric For Meteorol 148(8–9):1210–1229CrossRefGoogle Scholar
  88. Vogel JC (1993) Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Physiological ecology. Academic Press, San Diego, CA, pp 29–38CrossRefGoogle Scholar
  89. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106(447):85–100CrossRefGoogle Scholar
  90. Wehr R, Munger JW, Nelson DD, McManus JB, Zahniser MS, Wofsy SC, Saleska SR (2013) Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest. Agric For Meteorol 181:69–84CrossRefGoogle Scholar
  91. Werner RA, Rothe M, Brand WA (2001) Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta18O determination in CO2 gas. Rapid Commun Mass Spectrom 15(22):2152–2167CrossRefPubMedGoogle Scholar
  92. Wichura B (2009) Untersuchungen zum Kohlendioxid-Austausch über einem Fichtenwaldbestand. Hyperbolic-Relaxed-Eddy-Accumulation Messungen für das stabile Kohlenstoffisotop 13C und Waveletanalysen des turbulenten Kohlendioxid-Austauschs. PhD, Bayreuther Forum Ökologie 114, Universität BayreuthGoogle Scholar
  93. Wichura B, Buchmann N, Foken T (2000) Fluxes of the stable carbon isotope 13C above a spruce forest measured by hyperbolic relaxed eddy accumulation method. In: 14th symposium on boundary layers and turbulence, Aspen, Colorado, 7–11 August 2000. Boundary layer and turbulence conference series. American Meteorological Society, pp 559–562Google Scholar
  94. Wichura B, Ruppert J, Delany AC, Buchmann N, Foken T (2004) Structure of carbon dioxide exchange processes above a spruce forest. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment: A German case study, Ecological studies, vol 172. Springer, Berlin, pp 161–176CrossRefGoogle Scholar
  95. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Lay Meteorol 99:127–150CrossRefGoogle Scholar
  96. Wyngaard JC, Moeng C-H (1992) Parameterizing turbulent diffusion through the joint probability density. Bound-Lay Meteorol 60(1-2):1–13CrossRefGoogle Scholar
  97. Yakir D, Sternberg LSL (2000) The use of stable isotopes to study ecosystem gas exchange. Oecologia 123(3):297–311CrossRefGoogle Scholar
  98. Yakir D, Wang X-F (1996) Fluxes of CO2 and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. Nature 380:515–517CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bodo Wichura
    • 1
  • Johannes Ruppert
    • 2
  • Michael Riederer
    • 3
  • Thomas Foken
    • 4
    • 5
  1. 1.Deutscher Wetterdienst, Climate and Environment ConsultancyRegional Office PotsdamPotsdamGermany
  2. 2.Research Institute of the Cement IndustryDüsseldorfGermany
  3. 3.Ostbayerische Technische Hochschule RegensburgRegensburgGermany
  4. 4.BischbergGermany
  5. 5.Bayreuth Center of Ecology and Environmental ResearchUniversity of BayreuthBayreuthGermany

Personalised recommendations