Advertisement

Interleaving Clustering of Classes and Properties for Disambiguating Linked Data

  • Takahiro Komamizu
  • Toshiyuki Amagasa
  • Hiroyuki Kitagawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10075)

Abstract

As Linked Data (or LD) increasingly expands its capacity, ambiguity in vocabularies on LD has become more problematic. This paper deals with a part of the ambiguity, namely, class ambiguity and property ambiguity. In this paper, we propose a novel clustering method, CPClustering, which clusters synonymous classes and properties in an interleaving manner. CPClustering groups classes by their related properties, and, inversely, groups properties by their related classes. CPClustering iteratively clusters classes and properties, and updates their representations in terms of immediate clustering results.

Keywords

Interleaving clustering Class disambiguation Property disambiguation Linked Data 

Notes

Acknowledgement

This research was partly supported by the program Research and Development on Real World Big Data Integration and Analysis of the Ministry of Education, Culture, Sports, Science and Technology, and RIKEN, Japan.

References

  1. 1.
    Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Morzy, M., Ławrynowicz, A., Zozuliński, M.: Using substitutive itemset mining framework for finding synonymous properties in linked data. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 422–430. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21542-6_27 CrossRefGoogle Scholar
  3. 3.
    Steinley, D.: Properties of the hubert-arable adjusted rand index. Psychol. Methods 9(3), 386 (2004)CrossRefGoogle Scholar
  4. 4.
    W3C: SPARQL Query Language for RDF (2008). https://www.w3.org/TR/rdf-sparql-query/
  5. 5.
    Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: Statistical knowledge patterns: identifying synonymous relations in large linked datasets. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 703–719. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_44 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Takahiro Komamizu
    • 1
  • Toshiyuki Amagasa
    • 1
  • Hiroyuki Kitagawa
    • 1
  1. 1.University of TsukubaTsukubaJapan

Personalised recommendations