High Accuracy Millimetre Wave Radar for Micro Machining

  • Steffen Scherr
  • Sven Thomas
  • Mario Pauli
  • Serdal Ayhan
  • Nils Pohl
  • Thomas Zwick
Chapter
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

In cooperation of the two institutes FHR and IHE a high precision radar sensor was realised, which features a flexible integration in different micro machining modules. The feasibility of high precision and robust absolute measurements near the tool centre point is one of the main advantages of the radar technology. The realised radar sensor uses an integrated silicon-germanium (SiGe) transceiver chip which allows a cost-effective, energy-efficient, compact, and mass-market-capable solution. The system is working in the frequency range from 68 to 93 GHz providing a high modulation bandwidth of 25 GHz leading to a range resolution of a few mm and a record µm-accuracy. For improving the measurement and reducing the fabrication costs of this measurement system another sensor working at 240 GHz was developed as well. With a compact design of the measurement front-end a flexible integration even in constricted available space is possible. In combination with the Field Programmable Gate Array (FPGA) back-end measurement rates up to 100 Hz can be achieved, thus a closed loop control of the micro machining tool can be realised.

References

  1. 1.
    Pohl, N., Jaeschke, T., Aufinger, K.: An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer. IEEE Trans. Microwav. Theory Tech. 60(3), 757–765 (2012)CrossRefGoogle Scholar
  2. 2.
    Pohl, N., Gerding, M.: A dielectric lens-based antenna concept for high-precision industrial radar measurements at 24 GHz. In: 2012 9th European Radar Conference (EuRAD), pp. 405–408, Oct 2012Google Scholar
  3. 3.
    Bredendiek, C., Pohl, N., Jaeschke, T., Aufinger, K., Bilgic, A.: A 240 GHz single-chip radar transceiver in a SiGe bipolar technology with on-chip antennas and ultra-wide tuning range. In: 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 309–312 (2013)Google Scholar
  4. 4.
    Jaeschke, T., Bredendiek, C., Pohl, N.: A 240 GHz ultra-wideband FMCW radar system with on-chip antennas for high resolution radar imaging. In: 2013 IEEE MTT-S International Microwave Symposium Digest (IMS), pp. 1–4, June 2013Google Scholar
  5. 5.
    Thomas, S., Bredendiek, C., Pohl, N.: Comparison of inductor types for phase noise optimized oscillators in SiGe at 34 ghz. In: 2015 German Microwave Conference, pp. 288–291, March 2015Google Scholar
  6. 6.
    Thomas, S., Bredendiek, C., Jaeschke, T., Vogelsang, F., Pohl, N.: A compact, energy-efficient 240 GHz FMCW radar sensor with high modulation bandwidth. In: 2016 German Microwave Conference (GeMiC), pp. 397–400, March 2016Google Scholar
  7. 7.
    Ayhan, S., Pauli, M., Kayser, T., Scherr, S., Zwick, T.: FMCW radar system with additional phase evaluation for high accuracy range detection. In: European Radar Conference (EuRAD), pp. 117–120 (2011)Google Scholar
  8. 8.
    Pauli, M., Ayhan, S., Scherr, S., Rusch, C., Zwick, T.: Range detection with micrometer precision using a high accuracy FMCW radar system. In: 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 1–4, March 2012Google Scholar
  9. 9.
    Ayhan, S., Scherr, S., Pahl, P., Kayser, T., Pauli, M., Zwick, T.: High-accuracy range detection radar sensor for hydraulic cylinders. IEEE Sensors J. 14(3), 734–746 (2014)CrossRefGoogle Scholar
  10. 10.
    Ayhan, S., Scherr, S., Pahl, P., Walde, S., Pauli, M., Zwick, T.: Radar-based high-accuracy angle measurement sensor operating in the K-band. IEEE Sens. J. 15(2), 937–945 (2015)CrossRefGoogle Scholar
  11. 11.
    Scherr, S., Ayhan, S., Fischbach, B., Bhutani, A., Pauli, M., Zwick, T.: An efficient frequency and phase estimation algorithm with CRB performance for FMCW radar applications. IEEE Trans. Instrum. Meas. 64(7), 1868–1875 (2015)CrossRefGoogle Scholar
  12. 12.
    Ayhan, S.: Hochgenaue radarbasierte Abstandsmessung mit geführter Wellenausbreitung. KIT Scientific Publishing (2016)Google Scholar
  13. 13.
    Fleischer, J., Seemann, W., Zwick, T., Ayhan, S., Bauer, J., Kern, D., Scherr, S.: Antriebsmodul fr die Mikrobearbeitung. Werkstatt-technik online, vol. 11, no. 12 (2012)Google Scholar
  14. 14.
    Ayhan, S., Thomas, S., Kong, N., Scherr, S., Pauli, M., Jaeschke, T., Wulfsberg, J., Pohl, N., Zwick, T.: Millimeter-wave radar distance measurements in micro machining. In: IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 65–68, Jan. 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steffen Scherr
    • 1
  • Sven Thomas
    • 2
  • Mario Pauli
    • 1
  • Serdal Ayhan
    • 1
  • Nils Pohl
    • 2
  • Thomas Zwick
    • 1
  1. 1.Institute of Radio Frequency Engineering and Electronics (IHE)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Fraunhofer Institute for High-frequency Physics and Radar Technology (FHR)WachtbergGermany

Personalised recommendations