Advertisement

Flocking with Oblivious Robots

  • Davide Canepa
  • Xavier Defago
  • Taisuke Izumi
  • Maria Potop-Butucaru
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10083)

Abstract

We propose a new self-stabilizing flocking algorithm for oblivious robot networks, and prove its correctness. With this algorithm, a flock head emerges from a uniform flock of robots, and the algorithm allows those robots to follow the head, whatever its direction on the plane. Robots are oblivious in that they do not recall the result of their previous computations and do not share a common coordinate system.

The novelty of our approach consists in identifying the sufficient conditions to set on the flock pattern placement and the velocity of the flock-head (rotation, translation or speed), such that the flock head and the flock pattern are both preserved while the flock moves (following the head). Additionally, our system is both self-healing and self-stabilizing. In case the head leaves (e.g., disappears or is damaged) the flock agrees on a new head and follows its trajectory. Also, robots keep no record of their previous computations and we make no assumption on their initial position. The step complexity of our solution is O(n).

Keywords

Failure Detector Virtual Link Leader Election Detailed Code Common Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The last author would like to thank Ted Herman for helpful discussions related to flocking in biological systems that inspired the current specification and also the potential use of the energy constraints in order to conserve the head energy. We also would like to thank Shlomi Dolev for pointing us [1] and [4] that investigate the problem in a different model.

References

  1. 1.
    Ben-Shahar, O., Dolev, S., Dolgin, A., Michael, S.: Direction election in flocking swarms. Ad Hoc Netw. 12, 250–258 (2014)CrossRefGoogle Scholar
  2. 2.
    Canepa, D., Défago, X., Izumi, T., Potop-Butucaru, M.: Emergent velocity agreement in robot networks. CoRR, abs/1105.4082 (2011)Google Scholar
  3. 3.
    Canepa, D., Potop-Butucaru, M.G.: Stabilizing flocking via leader election in robot networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 52–66. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76627-8_7 CrossRefGoogle Scholar
  4. 4.
    Chazelle, B.: The convergence of bird flocking. J. ACM 61(4), 21:1–21:35 (2014)Google Scholar
  5. 5.
    Dieudonné, Y., Petit, F.: Circle formation of weak robots and lyndon words. Inf. Process. Lett. 101(4), 156–162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 267–281. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Dolev, S.: Self-stabilization. MIT Press (2000)Google Scholar
  8. 8.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Pattern formation by anonymous robots without chirality. In: Proceedings of the SIROCCO, pp. 147–162 (2001)Google Scholar
  9. 9.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gervasi, V., Prencipe, G.: Flocking by a set of autonomous mobile robots. Technical report TR-01-24, Universitat di Pisa (2001)Google Scholar
  11. 11.
    Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discrete Appl. Math. 144(3), 324–344 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gu, D., Wang, Z.: Leader-follower flocking: algorithms and experiments. IEEE Trans. Control Syst. Technol. 17(5), 1211–1219 (2009)CrossRefGoogle Scholar
  13. 13.
    Huang, A.Q.J., Farritor, S.M., Goddard, S.: Localization, follow-the-leader control of a heterogeneous group of mobile robots. IEEE ASME Trans. Mechatron. 11, 205–215 (2006)Google Scholar
  14. 14.
    La, H.M., Sheng, W.: Flocking control of a mobile sensor network to track and observe a moving target. In: Proceedings of the ICRA, pp. 3129–3134, May 2009Google Scholar
  15. 15.
    La, H.M., Sheng, W.: Flocking control of multiple agents in noisy environments. In: Proceedings of the ICRA, pp. 4964–4969, May 2010Google Scholar
  16. 16.
    Lee, G., Chong, N.-Y.: Adaptive flocking of robot swarms: algorithms and properties IEICE Trans. 91-B(9), 2848–2855 (2008)Google Scholar
  17. 17.
    Lindhe, M.: A flocking and obstacle avoidance algorithm for mobile robots. Ph.D. thesis, KTH Stockholm (2004)Google Scholar
  18. 18.
    Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end swarm robots. In: Dorigo, M., et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 424–431. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15461-4_40 CrossRefGoogle Scholar
  19. 19.
    Renaud, P., Cervera, E., Martiner, P.: Towards a reliable vision-based mobile robot formation control. IEEE/ASME Trans. Mechatron. 4, 3176–3181 (2004)Google Scholar
  20. 20.
    Souissi, S., Izumi, T., Wada, K.: Oracle-based flocking of mobile robots in crash-recovery model. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 683–697. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-05118-0_47 CrossRefGoogle Scholar
  21. 21.
    Suzuki, I., Yamashita, M.: A theory of distributed anonymous mobile robots formation and agreement problems. Technical report, Wisconsin Univ. Milwaukee Dept. of Electrical Engineering and Computer Science 6 (1994)Google Scholar
  22. 22.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots–formation and agreement problems. In: Proceedings of the 3rd International Colloquium on Structural Information and Communication Complexity (SIROCCO 1996), Siena, Italy, June 1996Google Scholar
  23. 23.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, Z., Gu, D.: A local sensor based leader-follower flocking system. In: Proceedings of the ICRA, pp. 3790–3795, May 2008Google Scholar
  25. 25.
    Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Davide Canepa
    • 1
  • Xavier Defago
    • 2
  • Taisuke Izumi
    • 3
  • Maria Potop-Butucaru
    • 1
  1. 1.LIP6, Univ. Pierre & Marie Curie - Paris 6, LIP6-CNRS UMR 7606ParisFrance
  2. 2.School of Information ScienceJapan Advanced Institute in Science and Technology (JAIST)NomiJapan
  3. 3.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations