Advertisement

Searching for an Evader in an Unknown Graph by an Optimal Number of Searchers

  • Takahiro Yakami
  • Yukiko Yamauchi
  • Shuji Kijima
  • Masafumi Yamashita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10083)

Abstract

The graph search problem is the problem of searching a graph G for a mobile evader by mobile searchers. The edge search is an offline and centralized version, and es(G) denotes the number of searchers necessary and sufficient to edge search G. An online and distributed setting assumes a port numbering of G, a distinct homebase and a whiteboard in each node. Search algorithms typically respect the monotone and connected search strategy to protect the information on whiteboards; however, \(\varOmega ( \frac{n}{\log n} es (G))\) searchers are necessary even for trees, where n is the order of G. We investigate the problem under a new online and distributed setting: We assume that searchers can exchange information wherever they meet, instead of assuming a port numbering, a homebase and whiteboards. Under this setting, we propose a search algorithm for es(G) searchers, which is optimal.

Keywords

Anonymous graph Asynchronous searcher Graph search problem Online and distributed setting Pursuit and evasion in graph 

References

  1. 1.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pp. 218–223 (1979)Google Scholar
  2. 2.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proceedings of the Symposium on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)Google Scholar
  3. 3.
    Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 70–84. Springer, Heidelberg (2006). doi: 10.1007/11780823_7 CrossRefGoogle Scholar
  4. 4.
    Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. SIAM J. Comput. 44(3), 844–867 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Efrat, A., Guibas, L.J., Har-Peled, S., Lin, D., Mitchell, J., Murali, T.: Sweeping simple polygon with a chain of guards. In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 927–936 (2000)Google Scholar
  6. 6.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontaminating chordal rings and tori using mobile agents. Int. J. Found. Comput. Sci. 18(3), 547–563 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 53(3), 167–178 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guibas, L., Latombe, J., LaValle, S., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. Int. J. Comput. Geom. Appl. 9(5), 471–494 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching. Distrib. Comput. 22, 117–127 (2009)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kameda, T., Suzuki, I., Yamashita, M.: An alternative proof for the equivalence of \(\infty \)-searcher and 2-searcher. Theor. Comput. Sci. 634, 108–119 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koucký, M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65(4), 717–726 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40(2), 224–245 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lee, J.-H., Park, S.-M., Chwa, K.-Y.: Equivalence of search capability among mobile guards with various visibilities. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 484–495. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30140-0_44 CrossRefGoogle Scholar
  14. 14.
    Park, S.-M., Lee, J.-H., Chwa, K.-Y.: Visibility-based pursuit-evasion in a polygonal region by a searcher. In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 456–468. Springer, Heidelberg (2001). doi: 10.1007/3-540-48224-5_38 CrossRefGoogle Scholar
  15. 15.
    Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. Lecture Notes in Mathematics, vol. 642, pp. 426–441. Springer, Heidelberg (1976)CrossRefGoogle Scholar
  16. 16.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region. SIAM J. Comput. 21(5), 863–888 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, pp. 973–1022. Elsevier (2000)Google Scholar
  19. 19.
    Yamashita, M., Umemoto, H., Suzuki, I., Kameda, T.: Searching for mobile intruders in a polygonal region by a group of mobile searchers. Algorithmica 31, 208–236 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Takahiro Yakami
    • 1
  • Yukiko Yamauchi
    • 1
  • Shuji Kijima
    • 1
  • Masafumi Yamashita
    • 1
  1. 1.Graduate School of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations